Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2025, Vol. 47 ›› Issue (3): 48-64.DOI: 10.11885/j.issn.1674-5086.2023.12.04.02
• GEOLOGY EXPLORATION • Previous Articles Next Articles
MAO Chuan1,2, LIU Li1,3, ZHAO Xiaoming1,3, WANG Peng2, ZHOU Ruiqi4
Received:2023-12-04
Published:2025-07-11
CLC Number:
MAO Chuan, LIU Li, ZHAO Xiaoming, WANG Peng, ZHOU Ruiqi. Sealing Evaluation of Air Energy Storage in Underground Brine Mining Salt Cavities in Sichuan Basin[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2025, 47(3): 48-64.
| [1] YU Weichao, HUANG Weihe, LIU Hongfei, et al. A systematic method for assessing the operating reliability of the underground gas storage in multiple salt caverns[J]. Journal of Energy Storage, 2020, 31: 101675. doi: 10.1016/j.est.2020.101675 [2] ZHANG Guimin, WANG Lijuan, WU Yu, et al. Failure mechanism of bedded salt formations surrounding salt caverns for underground gas storage[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(4): 1609-1625. doi: 10.1007/s10064-016-0958-3 [3] WANG Tongtao, YANG Chunhe, LI Jianjun, et al. Failure analysis of overhanging blocks in the walls of a gas storage salt cavern: A case study[J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 125-137. doi: 10.1007/s00603-016-1102-1 [4] ZHANG Nan, SHI Xilin, ZHANG Yun, et al. Tightness analysis of underground natural gas and oil storage caverns with limit pillar widths in bedded rock salt[J]. IEEE Access, 2020, 8: 12130-12145. doi: 10.1109/ACCESS.2020.2966006 [5] MORTAZAVI A, NASAB H. Analysis of the behavior of large underground oil storage caverns in salt rock[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(4): 602-624. doi: 10.1002/nag.2576 [6] MOGHADAM S N, NAZOKKAR K, RICHARD J, et al. Parametric assessment of salt cavern performance using a creep model describing dilatancy and failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 250-267. doi: 10.1016/j.ijrmms.2015.06.012 [7] CHEN Xiangsheng, LI Yinping, LIU Wei, et al. Study on sealing failure of wellbore in bedded salt cavern gas storage[J]. Rock Mechanics and Rock Engineering, 2019, 52(1): 215-228. doi: 10.1007/s00603-018-1571-5 [8] LI Jinlong, ZHANG Ning, XU Wenjie, et al. The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns[J]. Energy, 2022, 244: 123148. doi: 10.1016/j.energy.2022.123148 [9] BEREST P, BROUARD B, DURUP J G. Tightness tests in salt-cavern wells[J]. Oil and Gas Science and Technology, 2001, 56: 451-469. doi: 10.2516/OGST:2001037 [10] HE Tao, WANG Tongtao, XIE Dongzhou, et al. The mechanism of pores enhancing the deformation of completion cement under confining pressure[J]. Cement and Concrete Composites, 2022, 125: 104322. doi: 10.1016/j.cemconcomp.2021.104322 [11] WISE J, CEDOLA A, NYGAARD R, et al. Wellbore characteristics that control debonding initiation and microannuli width in finite element simulations[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107157. doi: 10.1016/j.petrol.2020.107157 [12] DONG Xuelin, DUAN Zhiyin, GAO Deli. Assessment on the cement integrity of CO2 injection wells through a wellbore flow model and stress analysis[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103097. doi: 10.1016/j.jngse.2019.103097 [13] LI Juan, SU Donghua, TANG Shizhong, et al. Deformation and damage of cement sheath in gas storage wells under cyclic loading[J]. Energy Science and Engineering, 2021, 9(4): 483-501. doi: 10.1002/ese3.869 [14] 郑雅丽,邱小松,赖欣,等. 气藏型地下储气库地质体注采运行风险分级与管控[J]. 天然气工业, 2022, 42(3): 114-119. doi: 10.3787/j.issn.1000-0976.2022.03.013 ZHENG Yali, QIU Xiaosong, LAI Xin, et al. Risk classification and control of gas-storage geological body of gas reservoir type during injection, production and operation[J]. Natural Gas Industry, 2022, 42(3): 114-119. doi: 10.3787/j.issn.1000-0976.2022.03.013 [15] 龚大兴,周家云,吴驰华,等. 四川盆地早中三叠世成盐期岩相古地理及成盐模式[J]. 地质学报, 2015, 89(11): 2075-2086.doi: 10.19762/j.cnki.dizhixuebao.2015.11.018 GONG Daxing, ZHOU Jiayun, WU Chihua, et al. Lithofacies paleogeography and salt-forming model of Lower- Middle Triassic in the Sichuan Basin[J]. Acta Geologica Sinica, 2015, 89(11): 2075-2086. doi: 10.19762/j.cnki.dizhixuebao.2015.11.018 [16] 杨洪宇,张兵,方朝合,等. 四川盆地海相深层富钾锂层系沉积演化规律及储卤层响应特征[J]. 地学前缘, 2021, 28(6): 95-104. doi: 10.13745/j.esf.sf.2021.1.45 YANG Hongyu, ZHANG Bing, FANG Chaohe, et al. Sedimentary evolution of deep marine potassium/lithium-rich brine reservoirs in the Sichuan Basin and a comprehensive response model for the brine storage layer[J]. Earth Science Frontiers, 2021, 28(6): 95-104. doi: 10.13745/j.esf.sf.2021.1.45 [17] 郑绵平,张永生,商雯君,等. 川东北普光地区发现新型杂卤石钾盐矿[J]. 中国地质, 2018, 45(5): 1074-1075.doi: 10.12029/gc20180514 ZHENG Mianping, ZHANG Yongsheng, SHANG Wenjun, et al. Discovery of a new type of polyhalite potassium ore in Puguang Region, northeast Sichuan[J]. Geology in China, 2018, 45(5): 1074-1075. doi: 10.12029/gc20180514 [18] 黎霆,李平平,诸丹诚,等. 蜀南地区嘉陵江组颗粒滩储层发育机理[J]. 沉积学报, 2021, 39(2): 470-481. doi: 10.14027/j.issn.1000-0550.2020.015 LI Ting, LI Pingping, ZHU Dancheng, et al. Mechanism of shoal reservoir in the Jialingjiang Formation, southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 470-481. doi: 10.14027/j.issn.1000-0550.2020.015 [19] CALCAGNO P, CHILES J P, COURRIOUX G, et al. Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules[J]. Physics of the Earth and Planetary Interiors, 2008, 171: 147-157. doi: 10.1016/j.pepi.2008.06.013 [20] ZHAO Kai, LIU Yuanxi, LI Yinping, et al. Feasibility analysis of salt cavern gas storage in extremely deep formation: A case study in China[J]. Journal of Energy Storage, 2022, 47: 103649. doi: 10.1016/j.est.2021.103649 [21] 付兴. 压缩空气储能腔体稳定性数值模拟研究[D]. 北京:中国石油大学(北京), 2020. FU Xing. Numerical simulation study on the stability of compressed air energy storage cavity[D]. Beijing: China University of Petroleum (Beijing), 2020. [22] JIANG Jiwei, LI Jun, LIU Gonghui, et al. Numerical simulation investigation on fracture debonding failure of cement plug/casing interface in abandoned wells[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107226. doi: 10.1016/j.petrol.2020.107226 [23] HE Tao, WANG Tongtao, WANG Duocai, et al. Integrity analysis of wellbores in the bedded salt cavern for energy storage[J]. Energy, 2023, 263: 125841. doi: 10.1016/j.energy.2022.125841 [24] HE Tao, WANG Tongtao, WANG Duocai, et al. Failure mechanism of gas storage salt cavern cement sheath under the coupling effect of plasticity and fatigue damage[J]. Construction and Building Materials, 2022, 354: 129179. doi:10.1016/j.conbuildmat.2022.129179 [25] HE Tao, WANG Tongtao, XIE Dongzhou, et al. Anisotropic damage model of wellbore cement sheath for underground salt cavern gas storage[J]. Construction and Building Materials, 2022, 320: 126284. doi:10.1016/j.conbuildmat.2021.126284 [26] SU Xuebin, LIU Sinan, ZHANG Liwei, et al. Wellbore leakage risk management in CO2 geological utilization and storage: A review[J]. Energy Reviews, 2023, 2(4): 100049. doi: 10.1016/j.enrev.2023.100049 [27] 闫炎,管志川,徐申奇,等. 体积压裂过程中固井界面微环隙扩展的数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(3): 66-73. doi: 10.3969/j.issn.1673-5005.2020.03.007 YAN Yan, GUAN Zhichuan, XU Shenqi, et al. Numerical simulation on micro-annulus propagation of cementing interface during hydraulic fracturing[J]. Journal of China University of Petroleum, 2020, 44(3): 66-73. doi: 10.3969/j.issn.1673-5005.2020.03.007 [28] SHAMSI T. 套管内压变化和高温条件下水泥环完整性评价[D]. 青岛:中国石油大学(华东), 2019. SHAMSI T. Cement integrity evaluation under internal casing pressure change and high temperature[D]. Qingdao: China University of Petroleum (East China), 2019. [29] 张鹏伟. 基于塑性损伤理论的软泥页岩井筒稳定性研究[D]. 青岛:中国石油大学(华东), 2020. ZHANG Pengwei. The stability study of wellbore in soft shale formation based on plastic damage theory[D]. Qingdao: China University of Petroleum (East China), 2020. [30] FENG Yongcun, LI Xiaorong, GRAY K E. Development of a 3D numerical model for quantifying fluid-driven interface debonding of an injector well[J]. International Journal of Greenhouse Gas Control, 2017, 62: 76-90. doi: 10.1016/j.ijggc.2017.04.008 [31] WANG W, TALEGHANI A D. Three-dimensional analysis of cement sheath integrity around wellbores[J]. Journal of Petroleum Science and Engineering, 2014, 121: 38-51. doi: 10.1016/j.petrol.2014.05.024 [32] THIERCELIN M J, BERNARD D, BARET J F, et al. Cement design based on cement mechanical response[J]. SPE Drilling & Completion, 1998, 13(4): 266-273. [33] 李军,陈勉,柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99-103. doi: 10.3321/j.issn:0253-2697.2005.06.023 LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99-103. doi: 10.3321/j.issn:0253-2697.2005.06.023 [34] PHILIPPACOPOULOS A J, BERNDT M L. Mechanical response and characterization of well cements[C]. SPE 77755-MS, 2002. doi: 10.2118/77755-MS [35] SCHULZE O, POPP T, KERN H. Development of damage and permeability in deforming rock salt[J]. Engineering Geology, 2001, 61: 163-180. doi: 10.1016/S0013-7952(01)00051-5 [36] POPP T, SCHULZE O, KERN H. Permeation and development of dilatancy and permeability in rock salt[C]. Bucharest: 5th Conference on the Mechanical Behavior of Salt, 1999. [37] ALKAN H, CINAR Y, PUSCH G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 108-119. doi: 10.1016/j.ijrmms.2006.05.003 [38] SUTHERLAND H J, CAVE S P. Argon gas permeability of new mexico rock salt under hydrostatic compression[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(5): 281-288. doi: 10.1016/0148-9062(80)90810-4 [39] STORMONT J C. Conduct and interpretation of gas permeability measurements in rock salt[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3-4): 303.e1-303.e11. [40] COSENZA P, GHOREYCHI M, BAZARGAN-SABET B, et al. In situ rock salt permeability measurement for long term safety assessment of storage[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(4): 509-526. doi: 10.1016/s0148-9062(99)00017-0 [41] MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 532-545. doi: 10.1016/j.rser.2014.01.068 [42] MUKRIMIN S G, YALCIN T. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. doi: 10.1016/j.rser.2016.11.102 [43] GAYATHRI V, PRASANNA P, VELRAJ R, et al. A review on compressed air energy storage-A pathway for smart grid and polygeneration[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 895-907. doi: 10.1016/j.rser.2016.05.002 [44] MARCUS B, DANIEL W, ROLAND S, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. doi: 10.1016/j.apenergy.2016.02.108 [45] CROTOGINO F, MOHMEYER K U, SCHARF R. Huntorf CAES: More than 20 years of successful operation[C]. Orlando, Florida, USA: SMRI Spring Meeting, 2001. [46] NAKHAMKIN M, ANDERSSON L, SWENSEN E, et al. AEC 110 MW CAES Plant: Status of project[J]. Journal of Engineering for Gas Turbines and Power, 1992, 114(4): 695-700. doi: 10.1115/1.2906644 [47] LIU Hejuan, YANG Chunhe, LIU Jianjun, et al. An overview of underground energy storage in porous media and development in China[J]. Gas Science and Engineering, 2023, 117: 205079. doi: 10.1016/j.jgsce.2023.205079 [48] LI Yi, LIU Yaning. Numerical study on the impacts of layered heterogeneity on the underground process in compressed air energy storage in aquifers[J]. Journal of Energy Storage, 2022, 46: 103837. doi: 10.1016/j.est.2021.103837 [49] HAN Yue, Cui Hao, MA Hongling, et al. Temperature and pressure variations in salt compressed air energy storage (CAES) caverns considering the air flow in the underground wellbore[J]. Journal of Energy Storage, 2022, 52: 104846. doi: 10.1016/j.est.2022.104846 |
| [1] | PEI Guangping, SHEN Tianjing, PENG Gengxin, JIANG Zelei, CHEN Feixu. Seismic Wavefield Forward Modeling Study Under Complex Conditions in the Southwest Foreland Belt of the Tarim Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2025, 47(3): 76-87. |
| [2] | CHENG Haiqing, YANG Simin, ZHAO Qinghui, ZAHNG Yong, SU Lei. An Experimental and Numerical Study of In-situ Generated Solvent Assisted SAGD in Heavy Oil Reservoir [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2025, 47(3): 101-111. |
| [3] | TANG Hao, LIAO Zichao, SUN Haofei, XU Chang, CHEN Xiao. Distribution of the Thin Reservoir of Shoal Facies at the Top of Member 1 of the Jialingjiang Formation in Luzhou Palaeohigh [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2025, 47(2): 18-31. |
| [4] | ZHAO Wenkai, XU Xiaoyong, TIAN Dongmei, ZHANG Ying, WU Jianan. Hydrodynamic of the Lower Eocene in the Ruvuma Basin, East Africa [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2025, 47(1): 80-94. |
| [5] | XIONG Liang, ZHONG Yijiang, DONG Yixin, PENG Minghong. Sedimentary Patterns and Depositional Systems of the Lower Cambrian Qiongzhusi Formation in the Southern Sichuan Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(6): 15-31. |
| [6] | LUO Sicong, ZHANG Nanxi, WANG Baobao, ZHOU Hua, WANG Tong. Pore Structure Characteristics and Main Controlling Factors of Qiongzhusi Formation Shales of Lower Cambrian, Southern Sichuan Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(6): 91-106. |
| [7] | TANG Jianming, WANG Tong, ZHOU Hua, LUO Sicong, ZHOU Jing. Sequence Stratigraphy of the Cambrian Qiongzhusi Formation and Its Control over Reservoirs in Southern Sichuan Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(6): 32-44. |
| [8] | YANG Liu, LIANG Hong, WANG Lun, PENG Xin, SI Guoshuai. A New Understanding of Reef and Beach Facies in the Maokou Formation of Southwest Sichuan Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(5): 52-65. |
| [9] | GUO Qiaozhen, LI Daoqing, QIU Peng, YAN Liheng, LUO Jianxin. Water-yielding Laws and Patterns of Volcanic Condensate Gas Reservoir in Kalameili [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(5): 106-114. |
| [10] | ZHANG Benjian, LU Jungang, ZHANG Rui, JIANG Qijun, XIAO Zhenglu. Hydrocarbon Expulsion Efficiency of Shale in the Da$'$anzhai Member of Central Sichuan Basin and Its Exploration Enlightenment [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(2): 15-25. |
| [11] | HUANG Lisha, YAN Jianping, HU Xingzhong, ZHENG Majia, ZHONG Guanghai. Characteristics Analysis and Its Enlightenment of Shale of Low Resistivity in Wufeng Longmaxi Formation in Southern Sichuan Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(2): 26-40. |
| [12] | FANG Pan, LU Xiaogang, SHI Shuangquan, PENG Huan, HOU Yongjun. Screening Mechanism of the Solid-liquid Mixture Vibration Screen [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(2): 164-175. |
| [13] | XIAO Fei, YANG Lu, WANG Xiao, ZHAO Xueqing, XIE Zongbao. Leakage Hazard Area of Natural Gas Stations Based on Scenario Cluster Analysis [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 147-155. |
| [14] | GE Xun, TANG Jiguang, ZHAO Peirong, TANG Yong, XU Qilu. Simulation and Analysis of Tectonic Stress Field of Shale Reservoir in Pengshui Area, Southeast Chongqing [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(5): 27-42. |
| [15] | WANG Qing, YANG Haozhe, LIU Jia, GAO Yu, GAO Liang. Optimization of SAGD Key Parameters for Vertical Assisted Double Horizontal Wells in Super Heavy Oil Reservoir [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(5): 81-87. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||