[1] 贾承造,王祖纲,姜林,等. 中国油气勘探开发成就与未来潜力:深层、深水与非常规油气——专访中国科学院院士、石油地质与构造地质学家贾承造[J]. 世界石油工业, 2023, 30(3): 1-8. doi: 10.20114/j.issn.10060030.20230626001 JIA Chengzao, WANG Zugang, JIANG Lin, et al. Achievements and future potential for oil & gas exploration and development in China: Deep-formation, deep-water and unconventional reservoirs—Interview with JIA Chengzao, Academician of the CAS, geologist in petroleum geology and structure[J]. World Petroleum Industry, 2023, 30(3): 1–8. doi: 10.20114/j.issn.1006-0030.20230626001 [2] 贾承造. 含油气盆地深层-超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 1-12. doi: 10.3969/j.issn.1673-5005.2023.05.001 JIA Chengzao. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 1–12. doi: 10.3969/j.issn.1673-5005.2023.05.001 [3] 张运东,方辉,刘帅奇,等. 深地油气勘探开发技术发展现状与趋势[J]. 世界石油工业, 2023, 30(6): 12-20. doi: 10.20114/j.issn.1006-0030.20230922001 ZHANG Yundong, FANG Hui, LIU Shuaiqi, et al. Process and development direction of deep oil and gas exploration and development[J]. World Petroleum Industry, 2023, 30(6): 12–20. 10.20114/j.issn.1006-0030.20230922001 [4] 范家伟,袁野,李绍华,等. 塔里木盆地深层致密油藏地质工程一体化模拟技术[J]. 断块油气田, 2022, 29(2): 194-198. doi: 10.6056/dkyqt202202009 FAN Jiawei, YUAN Ye, LI Shaohua, et al. Geologyengineering integrated simulation technology of deep tight oil reservoir in Tarim Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(2): 194198. doi: 10.6056/dkyqt202202009 [5] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. doi: 10.11743/ogg20180201 JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201 [6] 云露,邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征——以顺北油气田为例[J]. 石油学报, 2022, 42(6): 770-787. doi: 10.7623/syxb202206003 YUN Lu, DENG Shang. Structural stvles of deep strike slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: A case study of Shunbei Oil and Gas Field[J]. Acta Petrolei Sinica, 2022, 42(6): 770–787. doi: 10.7623/syxb202206003 [7] 刘宝增,漆立新,李宗杰,等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报, 2020, 41(4): 412-420. doi: 10.7623/syxb202004004 LIU Baozeng, QI Lixin, LI Zongjie, et al. Spatial characterization and quantitative description technology for ultra deep fault-karst reservoirs in the Shunbei Area[J]. Acta Petrolei Sinica, 2020, 41(4): 412–420. doi: 10.7623/syxb202004004 [8] 汪如军,王培俊,牛阁,等. 深大断裂控制油藏油柱高度计算方法[J]. 新疆石油地质, 2023, 44(5): 608-612. doi: 10.7657/XJPG20230513 WANG Rujun, WANG Peijun, NIU Ge, et al. Methods for calculating oil column height in reservoirs controlled by deep and large faults[J]. Xinjiang Petroleum Geology, 2023, 44(5): 608–612. doi: 10.7657/XJPG20230513 [9] 计秉玉,郑松青,顾浩. 缝洞型碳酸盐岩油藏开发技术的认识与思考——以塔河油田和顺北油气田为例[J]. 石油与天然气地质, 2022, 43(6): 1459-1465. doi: 10.11743/ogg20220614 JI Bingyu, ZHENG Songqing, GU Hao. On the development technology of fractured-vuggy carbonate reservoirs: A case study on Tahe Oilfield and Shunbei Oil and Gas Field[J]. Oil & Gas Geology, 2022, 43(6): 1459–1465. doi: 10.11743/ogg20220614 [10] 李宗宇. 塔河缝洞型碳酸盐岩油藏油水界面变化规律探讨[J]. 石油地质与工程, 2010, 24(2): 7981, 84. LI Zongyu. Discussion on oil-water contact variance of fracture-cavity carbonate rock reservoir of Tahe[J]. Petroleum Geology and Engineering, 2010, 24(2): 79–81, 84. [11] 黄诚,云露,曹自成,等. 塔里木盆地顺北地区中下奥陶统“断控”缝洞系统划分与形成机制[J]. 石油与天然气地质, 2022, 43(1): 54-68. doi: 10.11743/ogg20220105 HUANG Cheng, YUN Lu, CAO Zicheng, et al. Division and formation mechanism of fault-controlled fracture-vug system of the Middle-to-Lower Ordovician, Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 54–68. doi: 10.11743/ogg20220105 [12] 张文彪,段太忠,赵华伟,等. 断控岩溶体系空间结构差异性与三维建模——以顺北1 号断裂带为例[J]. 科学技术与工程, 2021, 21(28): 12094-12108. doi: 10.3969/j.issn.1671-1815.2021.28.024 ZHANG Wenbiao, DUAN Taizhong, ZHAO Huawei, et al. Hierarchical characteristics and 3D modeling of faultcontrolled paleokarst systems: A case study of Shunbei1 strike-slip fault zone[J]. Science Technology and Engineering, 2021, 21(28): 12094–12108. doi: 10.3969/j.issn.1671-1815.2021.28.024 [13] 李映涛,邓尚,张继标,等. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式:以塔里木盆地顺北4 号断裂带为例[J]. 地学前缘, 2023, 30(6): 80-94. doi: 10.13745/j.esf.sf.2023.2.32 LI Yingtao, DENG Shang, ZHANG Jibiao, et al. Fault zone architecture of strike-slip faults in deep, tight carbonates and development of reservoir clusters under fault control: A case study in Shunbei, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 80–94. doi: 10.13745/j.esf.sf.2023.2.32 [14] 李映涛,漆立新,张哨楠,等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484. doi: 10.7623/syxb201912006 LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristies and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei Area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470–1484. doi: 10.7623/syxb201912006 [15] 赵锐,赵腾,李慧莉,等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5): 8-13. doi: 10.3969/j.issn.1006-6535.2019.05.002 ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracture-cavity reservoir characterization and maincontrolling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil and Gas Reservoir, 2019, 26(5): 8–13. doi: 10.3969/j.issn.1006-6535.2019.05.002 [16] 李冬梅,邹伟,谢进,等. 基于等效渗流角模型的顺北油田线性流地层渗透率确定方法[J]. 断块油气田, 2022, 29(2): 251-255. doi: 10.6056/dkyqt202202019 LI Dongmei, ZOU Wei, XIE Jin, et al. The permeability determining method for linear flow reservoirs in Shunbei Oil Field based on the equivalent seepage angle model[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 251–255. doi: 10.6056/dkyqt202202019 [17] 徐燕东. 考虑重力因素的断溶体储层“井-洞-缝”模型试井解释方法[J]. 计算物理, 2020, 37(2): 189-197. doi: 10.19596/j.cnki.1001-246x.8032 XU Yandong. An interpretation method with “well-cavecrack” model of dissolves reservoir considering gravity factors[J]. Chinese Journal of Computational Physics, 2022, 37(2): 189–197. doi: 10.19596/j.cnki.1001-246x.8032 [18] 魏操,程时清,李宗泽,等. 井洞相连的串珠状缝洞型油藏试井分析方法[J]. 油气地质与采收率, 2022, 29(6): 85-94. doi: 10.13673/j.cnki.cn37-1359/te.202107002 WEI Cao, CHENG Shiqing, LI Zongze, et al. Well test analysis method for fracture-cavity reservoirs of beadson-string structure with wellbore-cave connection[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 85–94. doi: 10.13673/j.cnki.cn37-1359/te.202107002 [19] 刘彪,潘丽娟,王沫. 顺北油气田二区断控体油气藏井身结构设计及配套技术[J]. 断块油气田, 2023, 30(4): 692-697. doi: 10.6056/dkyqt202304023 LIU Biao, PAN Lijuan, WANG Mo. Well structure design and supporting technology of fault-controlled reservoir of No. 2 Block in Shunbei Oil-gas Field[J]. FaultBlock Oil & Gas Field, 2023, 30(4): 692–697. doi: 10.6056/dkyqt202304023 [20] NIE Renshi, MENG Yingfeng, JIA Yonglu, et al. Unsteady inter-porosity flow modeling for a multiple media reservoir[J]. Acta Geophysica, 2012, 60(1): 232–259. doi: 10.2478/s11600-011-0053-x [21] NIE Renshi, JIA Yonglu, MENG Yingfeng, et al. New type curves for modeling productivity of horizontal well with negative skin factors[J]. SPE Reservoir Evaluation & Engineering, 2012, 15(4): 486–497. doi: 10.2118/163045PA [22] WANG Xiaolu, FAN Xiangyu, HE Yongming, et al. A nonlinear model for fluid flow in a multiple-zone composite reservoir including the quadratic gradient term[J]. Journal of Geophysics and Engineering, 2013, 10(4): 1–11. doi: 10.1088/1742-2132/8/3/007 [23] NIE Renshi, ZHOU Hao, CHEN Zhangxin, et al. Investigation radii in multi-zone composite reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106262. doi: 10.1016/i.petrol.2019.106262 [24] 聂仁仕,贾冉,蔡明金,等. 双孔双渗油藏斜井压力动态特征分析[J]. 深圳大学学报理工版, 2022, 39(6): 660-667. doi: 10.3724/SP.J.1249.2022.06660 NIE Renshi, JIA Ran, CAI Mingjin, et al. Analysis on the pressure dynamic characteristics of slanted well in dual-porosity and dual-permeability reservoir[J]. Joumal of Shenzhen University Science and Engineering, 2022, 39(6): 660–667. doi: 10.3724/SP.J.1249.2022.06660 [25] 贾冉,聂仁仕,刘勇,等. 缝洞型油藏斜井三孔双渗试井分析模型[J]. 新疆石油地质, 2022, 43(5): 606-611. doi: 10.7657/XJPG20220514 JIA Ran, NIE Renshi, LIU Yong, et al. Tri-porosity and dual permeability well test analysis model for inclined wells in fractured-vuggy reservoirs[J]. Xinjiang Petroleum Geology, 2022, 43(5): 606–611. doi: 10.7657/XJPG20220514 [26] 王涛,于海洋,赵鹏飞,等. 基于不稳定压力试井分析的致密气井压裂后产能评估[J]. 特种油气藏, 2023, 30(4): 122-130. doi: 10.3969/j.issn.10066535.2023.04.015 WANG Tao, YU Haiyang, ZHAO Pengfei, et al. Productivity assessment of tight gas wells after fracturing based on unstable pressure well test analysis[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 122–130. doi: 10.3969/j.issn.1006-6535.2023.04.015 [27] 王贵生,聂仁仕,卜彩霞. 大牛地气田低渗透气藏水平井多点对比测试技术[J]. 天然气工业, 2015, 35(8): 1-5. doi: 10.3787/j.issn.1000-0976.2015.08.007 WANG Guisheng, NIE Renshi, BU Caixia, et al. Multipoint comparison testing technology applied to a horizontal well in the low-permeability gas reservoir of the Daniudi Gasfield, Ordos Basin[J]. Natural Gas Industry, 2015, 35(8): 1–5. doi: 10.3787/j.issn.1000-0976.2015.08.007 [28] 聂仁仕,贾永禄,石国新,等. 二次压力梯度非线性渗流理论与应用[J]. 大庆石油地质与开发, 2010, 29(5): 96-103. doi: 10.3969/J.ISSN.1000.3754.2010.05.019 NIE Renshi, JIA Yonglu, SHI Guoxin, et al. Theory and its application for nonlinear percolation with quadratic pressure gradient[J]. Petroleum Geology and Oilfield Development in Daqing, 2010, 29(5): 96–103. doi: 10.3969/j.issn.1000.3754.2010.05.019 |