[1] LIU Jingjing, LIU Jianchao. An intelligent approach for reservoir quality evaluation in tight sandstone reservoir using gradient boosting decision tree algorithm A case study of the Yanchang Formation, mid-eastern Ordos Basin, China (Article)[J]. Marine and Petroleum Geology, 2021, 126:104939. doi:10.1016/j.marpetgeo.2021.104939 [2] GUO Yufeng, BAO Zhidong, SONG Xinmin, et al. Complex lithology prediction using probabilistic neural network improved by continuous restricted Boltzmann machine and particle swarm optimization[J]. Journal of Petroleum Science & Engineering, 2019, 179:966-978. doi:10.1016/j.petrol.2019.05.032 [3] XIE Yunxin, ZHU Chenyang, HU Runshan, et al. A coarse-to-fine approach for intelligent logging lithology identification with extremely randomized trees[J]. Mathematical Geosciences, 2021, 53(5):1-18. doi:10.1007/s11004-020-09885-y [4] 颜世翠. 基于机器学习算法和属性特征双优选的砂体岩性预测方法[J]. 油气地质与采收率, 2022, 29(1):98-106. doi:10.13673/j.cnki.cn37-1359/te.2022.01.012 YAN Shicui. Prediction method of sandstone lithology based on optimized machine learning algorithms and attribute features[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1):98-106. doi:10.13673/j.cnki.cn37-1359/te.2022.01.012 [5] 王雷,韩学彪,曹英权,等. 基于对应分析的丽水椒 江凹陷潜山岩性识别方法[J]. 石油钻探技术, 2024, 52(1):140-145. doi:10.11911/syztjs.2024019 WANG Lei, HAN Xuebiao, CAO Yingquan, et al. A lithology identification method for buried hills in the Lishui-Jiaojiang Sag based on correspondence analysis[J]. Petroleum Drilling Techniques, 2024, 52(1):140-145. doi:10.11911/syztjs.2024019 [6] 管耀,王清辉,冯进,等. 基于机器学习的蚀变火成岩测录井综合岩性识别[J]. 吉林大学学报(地球科学版), 2024, 54(1):345-358. doi:10.13278/j.cnki.jjuese.20220310 GUAN Yao, WANG Qinghui, FENG Jin, et al. Comprehensive lithology recognition of altered igneous reservoirs based on machine learning for wireline and cutting logs in Huizhou Depression, Pearl River Mouth Basin, northern south China Sea[J]. Journal of Jilin University(Earth Science Edition), 2024, 54(1):345-358. doi:10.13278/j.cnki.jjuese.20220310 [7] 张凤博,马雪玲,董珍珍,等. 基于CNN和LSTM的机器学习模型在测井岩性识别的应用[J]. 西安石油大学学报(自然科学版), 2024, 39(5):96-103, 133. doi:10.3969/j.issn.1673-064X.2024.05.012 ZHANG Fengbo, MA Xueling, DONG Zhenzhen, et al. Application of machine learning model based on CNN and LSTM in well logging lithology identification[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(5):96-103, 133. doi:10.3969/j.issn.1673-064X.2024.05.012 [8] 孙予舒,黄芸,梁婷,等. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J]. 岩性油气藏, 2020, 32(4):98-106. doi:10.12108/yxyqc.20200410 SUN Yushu, HUANG Yun, LIANG Ting, et al. Lithology identification of complex carbonate reservoirs using XGBoost algorithm[J]. Lithologic Oil & Gas Reservoirs, 2020, 32(4):98-106. doi:10.12108/yxyqc.20200410 [9] 张翔,肖小玲,严良俊,等. 基于模糊支持向量机方法的岩性识别[J]. 石油天然气学报, 2009, 31(6):115-118, 184. doi:10.3969/j.issn.1000-9752.2009.06.021 ZHANG Xiang, XIAO Xiaoling, YAN Liangjun, et al. Lithology identification based on fuzzy support vector machine method[J]. Petroleum Science and Technology, 2009, 31(6):115-118, 184. doi:10.3969/j.issn.1000- 9752.2009.06.021 [10] 赵忠军,黄强东,石林辉,等. 基于BP神经网络算法识别苏里格气田致密砂岩储层岩性[J]. 测井技术, 2015, 39(3):363-367. doi:10.16489/j.issn.1004- 1338.2015.03.020 ZHAO Zhongjun, HUANG Qiangdong, SHI Linhui, et al. Lithology identification of tight sandstone reservoirs in Surige Gas Field based on BP neural network algorithm[J]. Well Logging Technology, 2015, 39(3):363-367. doi:10.16489/j.issn.1004-1338.2015.03.020 [11] 宋延杰,王团,付健,等. 雷64区块砂砾岩储层岩性识别方法研究[J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(1):73-78, 89. doi:10.3969/j.issn.1672- 0946.2015.01.019 SONG Yanjie, WANG Tuan, FU Jian, et al. Study on lithology identification method of conglomerate reservoirs in Lei 64 Block[J]. Journal of Harbin University of Commerce (Natural Science Edition), 2015, 31(1):73-78, 89. doi:10.3969/j.issn.1672-0946.2015.01.019 [12] 韩启 迪,张小 桐,申维. 基于 梯度 提升 决策 树(GBDT)算法的岩性识别技术[J]. 矿物岩石地球化学通报, 2018, 37(6):1173-1180. doi:10.19658/j.issn.1007-2802.2019.38.009 HAN Qidi, ZHANG Xiaotong, SHEN Wei. Lithology identification technique based on gradient boosting decision tree (GBDT) algorithm[J]. Bulletin of Mineral, Rock and Geochemistry, 2018, 37(6):1173-1180. doi:10.19658/j.issn.1007-2802.2019.38.009 [13] 王恒,姜亚楠,张欣,等. 基于梯度提升算法的岩性识别方法[J]. 吉林大学学报(地球科学版), 2021, 51(3):940-950. doi:10.13278/j.cnki.jjuese.20200081 WANG Heng, JIANG Ya'nan, ZHANG Xin, et al. Lithology identification method based on gradient boosting algorithm[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3):940-950. doi:10.13278/j.cnki.jjuese.20200081 [14] JEROME H F. Greedy function approximation:A gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5):1189-1232. [15] 闫星宇,顾汉明,肖逸飞,等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探, 2019, 54(2):447-455, 241. doi:10.13810/j.cnki.issn.1000-7210.2019.02.024 YAN Xingyu, GU Hanming, XIAO Yifei, et al. Application of XGBoost algorithm in well logging interpretation of tight sandstone gas reservoirs[J]. Oil Geophysical Prospecting, 2019, 54(2):447-455, 241. doi:10.13810/j.cnki.issn.1000-7210.2019.02.024 [16] 丁阳阳,赵军龙,李兆明,等. 基于XGBoost算法的煤体结构测井识别技术研究[J]. 地球物理学进展, 2022, 37(3):998-1006. doi:10.6038/pg2022FF0435 DING Yangyang, ZHAO Junlong, LI Zhaoming, et al. Well logging identification of coal structure based on XGBoost algorithm[J]. Progress in Geophysics, 2022, 37(3):998-1006. doi:10.6038/pg2022FF0435 [17] 宋涛,黄福喜,汪少勇,等. 准噶尔盆地玛湖凹陷侏罗系油气藏特征及勘探潜力[J]. 中国石油勘探, 2019, 24(3):341-350. doi:10.3969/j.issn.1672-7703.2019.03.007 SONG Tao, HUANG Fuxi, WANG Shaoyong, et al. Characteristics and exploration potential of Jurassic oil and gas reservoirs in the Mahu Depression, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(3):341-350. doi:10.3969/j.issn.1672-7703.2019.03.007 [18] 陈程,彭梦芸,赵婷,等. 玛湖凹陷北、西斜坡区百口泉组储集层对比及勘探启示[J]. 新疆石油地质, 2022, 43(1):18-25. doi:10.7657/XJPG20220103 CHEN Cheng, PENG Mengyun, ZHAO Ting, et al. Reservoir correlation and exploration implications of the Baikouquan Formation in the northern and western slope areas of the Mahu Sag[J]. Xinjiang Petroleum Geology, 2022, 43(1):18-25. doi:10.7657/XJPG20220103 [19] 靳军,康逊,胡文瑄,等. 准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响[J]. 石油与天然气地质, 2017, 38(2):323-333, 406. doi:10.11743/ogg20170212 JIN Jun, KANG Xun, HU Wenxuan, et al. Diagenesis of Baikouquan Formation conglomerate reservoirs in the western slope of the Mahu Sag, Junggar Basin, and its influence on reservoir properties[J]. Oil & Gas Geology, 2017, 38(2):323-333, 406. doi:10.11743/ogg20170212 [20] 付瑜,柳益群,蒋宜勤,等. 准噶尔盆地西北缘玛湖凹陷三叠系百口泉组砂砾岩储层孔隙结构及渗流特征[J]. 西北地质, 2020, 53(2):223-234. doi:10.19751/j.cnki.61-1149/p.2020.02.014 FU Yu, LIU Yiqun, JIANG Yiqin, et al. Pore structure and flow characteristics of Triassic Baikouquan Formation conglomerate reservoirs in the northwestern margin of the Mahu Sag, Junggar Basin[J]. Northwest Geology, 2020, 53(2):223-234. doi:10.19751/j.cnki.61-1149/p.2020.02.014 [21] 罗水亮,漆影强,唐松,等. 基于改进Stacking算法的碳酸盐岩储层测井岩性识别方法与应用[J]. 特种油气藏, 2025, 32(4):58-67. doi:10.3969/j.issn.1006- 6535.2025.04.007 LUO Shuiliang, QI Yingqiang, TANG Song, et al. Lithology identification method and application of carbonate reservoirs from well logging based on an improved Stacking algorithm[J]. Special Oil & Gas Reservoirs, 2025, 32(4):58-67. doi:10.3969/j.issn.1006-6535.2025.04.007 |