西南石油大学学报(自然科学版) ›› 2017, Vol. 39 ›› Issue (4): 136-144.DOI: 10.11885/j.issn.16745086.2015.12.24.04
Previous Articles Next Articles
DU Dianfa1, ZHAO Yanwu1, ZHANG Jing1, LIU Changli2, TANG Jianxin2
Received:
2015-12-24
Revised:
2017-05-14
Online:
2017-08-01
Published:
2017-08-01
CLC Number:
DU Dianfa, ZHAO Yanwu, ZHANG Jing, LIU Changli, TANG Jianxin. Progress and Trends in Shale Gas Seepage Mechanism Research[J]. 西南石油大学学报(自然科学版), 2017, 39(4): 136-144.
[1] 李亚洲,李勇明,罗攀,等. 页岩气渗流机理与产能研究[J]. 断块油气田, 2013, 20(2):186190. doi:10.-6056/dkyqt201302013 LI Yazhou, LI Yongming, LUO Pan, et al. Study on seepage mechanism and productivity of shale gas[J]. Fault Block Oil Gas Field, 2013, 20(2):186-190. doi:10.6056/-dkyqt201302013 [2] 刘晓旭,杨学锋,陈远林,等. 页岩气分段压裂水平井渗流机理及试井分析[J]. 天然气工业, 2013, 33(12):7781. doi:10.3787/j.issn.1000-0976.2013.12.011 LIU Xiaoxu, YANG Xuefeng, CHEN Yuanlin, et al. Seepage behavior and well testing in horizontal shale gas wells under multi-stage fracking[J]. Natural Gas Industry, 2013, 33(12):77-81. doi:10.3787/j.issn.1000-0976.-2013.12.011 [3] 程远方,董丙响,时贤,等. 页岩气藏三孔双渗模型的渗流机理[J]. 天然气工业, 2012, 32(9):4447. doi:10.3787/j.issn.1000-0976.2012.09.010 CHENG Yuanfang, DONG Bingxiang, SHI Xian, et al. Seepage mechanism of a triple-porosity/dual-permeability model for shale gas reservoirs[J]. Natural Gas Industry, 2012, 32(9):44-47. doi:10.3787/j.issn.1000-0976.2012.-09.010 [4] 侯宇光,何生,易积正,等. 页岩孔隙结构对甲烷吸附能力的影响[J]. 石油勘探与开发, 2014, 41(2):248256. doi:10.11698/PED.2014.02.17 HOU Yuguang, HE Sheng, YI Jizheng, et al. Effect of pore structure on methane sorption capacity of shales[J]. Petroleum Exploration and Development, 2014, 41(2):248-256. doi:10.11698/PED.2014.02.17 [5] 杨峰,宁正福,张世栋,等. 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4):135140. doi:10.3787/j.issn.1000-0976.2013.04.025 YANG Feng, NING Zhengfu, ZHANG Shidong, et al. Characterization of pore structures in shales through nitrogen adsorption experiment[J]. Natural Gas Industry, 2013, 33(4):135-140. doi:10.3787/j.issn.1000-0976.2013.04.-025 [6] 甘辉,张虎,宋益滔. 页岩气可采性参数研究[J]. 复杂油气藏,2015(3):2226. doi:10.16181/j.cnki.fzyqc.-2015.03.005 GAN Hui, ZHANG Hu, SONG Yitao. Research on parameters of shale gas recoverability[J]. Complex Hydrocarbon Reservoirs, 2015(3):22-26. doi:10.16181/j.cnki.fzyqc.-2015.03.005 [7] 李勇明,姚锋盛,赵金洲,等. 页岩气藏纳米孔隙微观渗流动态研究[J]. 科学技术与工程, 2013, 13(10):26572661. doi:10.3969/j.issn.1671-1815.2013.10.008 LI Yongming, YAO Fengsheng, ZHAO Jinzhou, et al. Shale gas reservoir nanometer-pore microscopic seepage dynamic research[J]. Science Technology and Engineering, 2013, 13(10):2657-2661. doi:10.3969/j.issn.1671-1815.2013.10.008 [8] 薛华庆,王红岩,刘洪林,等. 页岩吸附性能及孔隙结构特征以四川盆地龙马溪组页岩为例[J]. 石油学报,2013,34(5):826832. doi:10.7623/syxb201305003 XUE Huaqing, WANG Hongyan, LIU Honglin, et al. Adsorption capability and aperture distribution characteristics of shales:Taking the Longmaxi Formation shale of Si chuan Basin as an example[J]. Acta Petrolei Sinica, 2013, 34(5):826-832. doi:10.7623/syxb201305003 [9] SILIN D, KNEAFSEY T J. Gas shale:From nanometerscale observation to well modeling[C]. CSUG/SPE 149489, 2011. doi:10.2118/149489-PA [10] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Structural characterization of gas shales on the micro-and nano-scales[C]. SPE 137693, 2010. doi:10.2118/137693-MS [11] ECONOMIDES M J, WANG X. Differences and similarities in the stimulation and production of shale gas reservoirs and other tight formations[C]. SPE 137718, 2010. doi:10.2118/137718-MS [12] AMBROSE R J, HARTMAN R C, DIZA-CAMPOS M, et al. New pore-scale considerations for shale gas in place calculations[C]. SPE 131772, 2010. doi:10.2118/131772-MS [13] BUSTIN R M, CHALMERS G, BUSTIN A A M. Quantification of the gas-in place and flow characteristics of tight gas-charged rocks and gas-shale potential in British Columbia[C]. Geoscience BC Report, 2011. [14] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG bulletin, 2009, 93(3):329-340. doi:10.1306/10240808059 [15] 张志英,杨盛波. 页岩气吸附解吸规律研究[J]. 实验力学, 2012, 22(4):492-497. ZHANG Zhiying, YANG Shengbo. On the adsorption and desorption trend of shale gas[J]. Journal of Experimental Mechanics, 2012, 22(4):492-497. [16] 陈永峰. 论页岩气实验研究及设备选型分析调研[J]. 华北国土资源, 2014(6):94-96. doi:10.3969/j.issn.1672-7487.2014.06.043 CHEN Yongfeng. Investigation and research on shale gas experimental study and equipment selection[J]. Huabei Land and Resources, 2014(6):94-96. doi:10.3969/j.issn.-1672-7487.2014.06.043 [17] 郝春山,李治平,杨满平,等. 变形介质的变形机理及物性特征研究[J]. 西南石油学院学报, 2003, 25(4):19-21. doi:10.3863/j.issn.1674-5086.2003.04.006 HAO Chunshan, LI Zhiping, YANG Manping, et al. Research on deformation mechanism and petrophysical characteristics of deformable media[J]. Journal of Southwest Petroleum Institute, 2003, 25(4):19-21. doi:10.3863/j.-issn.1674-5086.2003.04.006 [18] 汪吉林,刘桂建,王维忠,等. 川东南龙马溪组页岩孔裂隙及渗透性特征[J]. 煤炭学报, 2013, 38(5):772-777. WANG Jilin, LIN Guijian, WANG Weizhong, et al. Characteristics of pore-fissure and permeability of shales in the Longmaxi Formation in southeastern Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5):772-777. [19] 邓佳,朱维耀,刘锦霞,等. 考虑应力敏感性的页岩气产能预测模型[J]. 天然气地球科学, 2013, 24(3):456-460. DEND Jia, ZHU Weiyao, LIU Jinxia, et al. Productivity prediction model of shale gas considering stress sensitivity[J]. Natural Gas Geoscience, 2013, 24(3):456-460. [20] 张烨,潘林华,周彤,等. 龙马溪组页岩应力敏感性实验评价[J]. 科学技术与工程, 2015, 15(8):37-41. doi:10.3969/j.issn.1671-1815.2015.08.007 ZHANG Ye, PAN Hualin, ZHOU Tong, et al. Experimental study of stress sensitivity of shales in Longmaxi Formation[J]. Science Technology and Engineering, 2015, 15(8):37-41. doi:10.3969/j.issn.1671-1815.2015.08.007 [21] 张睿,宁正福,杨峰,等. 页岩应力敏感实验与机理[J]. 石油学报, 2015, 36(2):224-231. doi:10.7623/-syxb201502012 ZHANG Rui, NING Zhengfu, YANG Feng, et al. Shale stress sensitivity experiment and mechanism[J]. Acta Petrolei Sinica, 2015, 36(2):224-231. doi:10.7623/-syxb201502012 [22] 何应付,张亚蒲,刘学伟. 煤层气藏单相气体渗流特征实验研究[J]. 中国煤层气, 2009, 6(1):10-14. doi:10.3969/j.issn.1672-3074.2009.01.003 HE Yingfu, ZHANG Yapu, LIU Xuewei. Experimental research on permeation characteristics of single phase[J]. China Coalbed Methane, 2009, 6(1):10-14. doi:10.3969/-j.issn.1672-3074.2009.01.003 [23] 邓佳. 页岩气储层多级压裂水平井非线性渗流理论研究[D]. 北京:北京科技大学, 2015. DENG Jia. Nonlinear seepage theory of multistage fractured horizontal wells for shale gas reservoirs[D]. Beijing:University of Science and Technology Beijing, 2015. [24] 黄婉莹,陆杭军,许友生. 纳米级孔隙中水分子流动机制的分子动力学模拟研究[J]. 渗流力学进展, 2015, 5(2):9-15. doi:10.12677/APF.2015.52002 HUANG Wanying, LU Hangjun, XU Yousheng. The molecular simulation of water molecules flow mechanism in nanoscale pore[J]. Advances in Porous Flow, 2015, 5(2):9-15. doi:10.12677/APF.2015.52002 [25] RIEWCHOTISAKUL S, AKKUTLU I Y. Adsorption enhanced transport of hydrocarbons in organic nanopores[C]. SPE 175107, 2015. doi:10.2118/175107-MS [26] HE S, LIU H, QIN G. Molecular dynamics simulation on modeling shale gas transport and storage mechanisms in complex nano-pore structure in organic matters[C]. SPE 178713, 2015. doi:10.2118/178713-MS [27] STUKAN M, ABDALLAH W. Nano-confined adsorbed and free gas in shale reservoirs:A molecular dynamic study[C]. SPE 172589, 2015. doi:10.2118/137693-MS [28] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendon Press, 1994. [29] 董岳. 页岩气在微纳孔隙介质中渗流的直接模拟蒙特卡罗方法研究[D]. 青岛:中国石油大学(华东), 2013. DONG Yue. Study of the flow of shale gas in Micro/Nano pore medium by direct simulation Monte Carlo[D]. Qingdao:China University of Petroleum, 2013. [30] CHRISTOU C, DADZIE S K. Direct-simulation monte carlo investigation of a berea porous structure[C]. SPE 173314, 2015. doi:10.2118/173314-PA [31] ISMAIL M I A, HOME R N. Modeling adsorption of gases in nanoscale pores using grand canonical monte carlo simulation techniques[C]. SPE 170948, 2014. doi:10.-2118/170948-MS [32] 姚军,孙海,黄朝琴,等. 页岩气藏开发中的关键力学问题[J]. 中国科学:物理学力学天文学, 2013(12):1527-1547. doi:10.1360/132013-97 YAO Jun, SUN Hai, HUANG Zhaoqin, et al. Key mechanical problems in the development of shale gas reservoirs[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013(12):1527-1547. doi:10.1360/132013-97 [33] FATHI E, AKKUTLU I Y. Lattice Boltzmann method for simulation of shale gas transport in Kerogen[C]. SPE 146821, 2011. doi:10.2118/146821-PA [34] ZHANG Xiaoling, XIAO Lizhi, SHAN Xiaowen, et al.Lattice boltzmann simulation of shale gas transport in organic nano-pores[R]. Scientific Reports, 2014. doi:10.-1038/srep04843 [35] 宁正福,王波,杨峰,等. 页岩储集层微观渗流的微尺度效应[J]. 石油勘探与开发, 2014, 41(4):445-452. doi:10.11698/PED.2014.04.08 NING Zhengfu, WANG Bo, YANG Feng, et al. Microscale effect of microvadose in shale reservoirs[J]. Petroleum Exploration and Development, 2014, 41(4):445-452. doi:10.11698/PED.2014.04.08 [36] REN Junjie, GUO Ping, GUO Zhaoli, et al. A lattice boltzmann model for simulating gas flow in kerogen pores[J]. Transport in Porous Media, 2015, 106(2):285-301. doi:10.1007/s11242-014-0401-9 [37] 孙海,姚军,张磊,等. 基于孔隙结构的页岩渗透率计算方法[J]. 中国石油大学学报(自然科学版), 2014, 38(2):92-98. doi:10.3969/j.issn.1673-5005.2014.02.-014 SUN Hai, YAO Jun, ZHANG Lei, et al. A computing method of shale permeability based on pore structures[J]. Journal of China University of Petroleum, 2014, 38(2):92-98. doi:10.3969/j.issn.1673-5005.2014.02.014 [38] 张磊,姚军,孙海,等. 利用格子Boltzmann方法计算页岩渗透率[J]. 中国石油大学学报(自然科学版), 2014, 38(1):87-91. doi:10.3969/j.issn.1673-5005.2014.01.-013 ZHANG Lei, YAO Jun, SUN Hai, et al. Permeability calculation in shale using lattice Boltzmann method[J]. Journal of China University of Petroleum, 2014, 38(1):87-91. doi:10.3969/j.issn.1673-5005.2014.01.013 [39] 姚军,赵建林,张敏,等. 基于格子Boltzmann方法的页岩气微观流动模拟[J]. 石油学报, 2015, 36(10):1280-1289. doi:10.7623/syxb201510011 YAO Jun, ZHAO Jianlin, ZHANG Min, et al. Microscale shale gas flow simulation based on lattice Boltzmann method[J]. Acta Petrolei Sinica, 2015, 36(10):1280-1289. doi:10.7623/syxb201510011 [40] 张耀,陈灿,张涛,等. 分子模拟技术在页岩气开发中的应用[J]. 重庆科技学院学报(自然科学版), 2013, 15(6):75-77. ZHANG Yao, CHEN Can, ZHANG Tao, et al. Discussion on the application of MS technology in shale gas[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2013, 15(6):75-77. [41] 赵素,李金富,周尧和. 分子动力学模拟及其在材料科学中的应用[J]. 材料导报, 2007, 21(4):5-8. doi:10.-3321/j.issn:1005-023X.2007.04.002 ZHAO Su, LI Jinfu, ZHOU Yaohe. Molecular dynamics simulation and its application in the materials science[J]. Materials Review, 2007, 21(4):5-8. doi:10.3321/j.issn:-1005-023X.2007.04.002 [42] 张武生,杨燕华,徐济鋆. 格子波尔兹曼方法及其应用[J]. 现代机械, 2003(4):4-6. doi:10.3969/j.issn.-1002-6886.2003.04.002 ZHANG Wusheng, YANG Yanhua, XU Jiyun. Theory and application of lattice boltzmann method[J]. Modern Machinery, 2003(4):4-6. doi:10.3969/j.issn.1002-6886.-2003.04.002 |
[1] | YUE Hong, YANG Zhaozhong, FAN Yu. Research and Application of Volume Fracturing Technology Fracture Control in Ning 209 Area [J]. 西南石油大学学报(自然科学版), 2020, 42(5): 86-98. |
[2] | LIANG Hongbin, ZHANG Liehui, CHEN Man, ZHAO Yulong, XIANG Zuping. A New Method for Rapid Evaluation of Shale Gas Content [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 110-117. |
[3] | FAN Yu, ZHONG Chengxu, MU Naiqu, JIN Xin, WU Pengcheng. Application of a Biosynthesis-based Drilling Fluid in the Changning Gas Field [J]. 西南石油大学学报(自然科学版), 2020, 42(1): 133-139. |
[4] | ZHANG Liehui, CUI Qianchen, XIE Jun, ZHENG Jian, LI Chengyong. Linear Coupling Seepage Model for Fractured Horizontal Wells in Shale Gas Reservoir [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 1-12. |
[5] | GUO Xiao, YANG Kairui, YANG Yurui, JIA Haowei. Influence of Seepage Velocity on Shale Gas Exploration by Pore Network Simulation [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 19-27. |
[6] | CHENG Xiaowei, ZHANG Gaoyin, MA Zhichao, LI Bin, GU Tao. Technology of In-situ Toughening of Oil Well Cement in Shale Gas Horizontal Wells [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 68-74. |
[7] | YANG Zhaozhong, LI Yang, LI Xiaogang, LI Chengyong. Key Technology Progress and Enlightenment in Refracturing of Shale Gas Horizontal Wells [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 75-86. |
[8] | LI Yongming, LUO Ang, WU Lei, YI Xiangyi. Shale Productivity Model Considering Stress Sensitivity and Hydraulic Fracture Azimuth [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 117-123. |
[9] | ZHAO Yulong, LIANG Hongbin, JING Cui, SHANG Shaofen, LI Chengyong. A New Method for Quick EUR Evaluation of Shale Gas Wells [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 124-131. |
[10] | HU Degao, GUO Xiao, ZHENG Aiwei, SHU Zhiguo, ZHANG Baiqiao. Productivity Evaluation of Fractured Wells in Shale Gas Reservoirs [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 132-138. |
[11] | FANG Quantang, LI Zhenglan, DUAN Yonggang, WEI Mingqiang, ZHANG Yuyi. The Finite-conductivity Fracture Networks Model in Shale Gas Reservoirs with Consideration of Induced Fractures [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 139-145. |
[12] | ZENG Dezhi, YU Zhiming, HE Qiyao, LIU Qiaoping, SHI Taihe. Research on Safety Assessment Technology of Sustained Casing Pressure in Shale Gas [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 146-154. |
[13] | ZHANG Zhi, DING Jian, ZHAO Yuanjin, DENG Hu, LU Qi. Calculation Method of Critical Control Value of Sustained Annular Pressure in Shale Gas Well [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 155-164. |
[14] | FU Jianhong, SU Yu, JIANG Wei, ZHONG Chengxu, LI Zhengtao. Research and Application of Wellbore Transient Temperature in Deep Shale Gas Horizontal Wells [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 165-173. |
[15] | CAO Haitao, GUAN Xiaoxu, LI Xiaoping, ZHAO Yong, YU Xiaoqun. Method to Predict the Self-supporting Fracture Conductivity of Shale [J]. 西南石油大学学报(自然科学版), 2019, 41(5): 134-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||