[1] 孟令雅,刘翠伟,刘超,等. 基于特征量提取的输气管道微泄漏检测[J]. 中国石油大学学报(自然科学版), 2014, 38(6):153-160. doi:10.3969/j.issn.1673-5005.2014.06.023 MENG Lingya, LIU Cuiwei, LIU Chao, et al. Characteristics extraction of acoustic leakage signal for natural gas pipelines[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(6):153-160. doi:10.3969/j.issn.1673-5005.2014.06.023 [2] 张卫兵,杜明俊,佟倡,等. 基于声波法的输气管道泄漏检测技术研究[J]. 化学工程与装备, 2018(1):246-248, 259. doi:10.19566/j.cnki.cn35-1285/tq.2018.01.085 ZHANG Weibing, DU Mingjun, TONG Chang, et al. Research on gas pipeline leak detection technology based on acoustic wave method[J]. Chemical Engineering & Equipment, 2018(1):246-248, 259. doi:10.19566/j.cnki.cn35-1285/tq.2018.01.085 [3] 张子涛,殷存志,杨毅,等. 气田集气站安全监测数据异常值识别研究[J]. 油气田地面工程, 2015, 34(10):7-9. doi:10.3969/j.issn.1006-6896.2015.10.001 ZHANG Zitao, YIN Cunzhi, YANG Yi, et al. Research on abnormal value identification of safety monitoring data in gas field gas station[J]. Oil-Gasfield Surface Engineering, 2015, 34(10):7-9. doi:10.3969/j.issn.1006-6896.2015.10.001 [4] 胡瑾秋,郭放,张来斌. 基于趋势分析的间歇过程异常工况超早期报警研究[J]. 石油学报(石油加工), 2018, 34(1):101-107. doi:10.3969/j.issn.1001-8719.2018.01.014 HU Jinqiu, GUO Fang, ZHANG Laibin. Study on abnormal situation ultra-early warning of batch process based on trend analysis[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(1):101-107. doi:10.3969/j.issn.1001-8719.2018.01.014 [5] 李悦,王建伟. 天然气管道振动原因分析及应对措施[J]. 清洗世界, 2019, 35(1):24-25. doi:10.3969/j.issn.1671-8909.2019.01.009 LI Yue, WANG Jianwei. Cause analysis and countermeasures for vibration of natural gas pipeline[J]. Cleaning World, 2019, 35(1):24-25. doi:10.3969/j.issn.1671-8909.2019.01.009 [6] 刘恩斌,匡建超,吕留新,等. 大型天然气管道稳态运行优化研究[J]. 西南石油大学学报(自然科学版), 2019, 41(5):150-160. doi:10.11885/j.issn.1674-5086.2018.12.12.01 LIU Enbin, KUANG Jianchao, LÜ Liuxin, et al. Optimization of steady operation of large scale natural gas pipelines[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(5):150-160. doi:10.11885/j.issn.1674-5086.2018.12.12.01 [7] 张继燕,欧莹元,张起荣. 基于实时数据库的油气处理故障诊断系统[J]. 油气田地面工程, 2015, 34(3):33-35. doi:10.3969/j.issn.1006-6896.2015.3.018. ZHANG Jiyan, OU Yingyuan, ZHANG Qirong. Oil and gas processing fault diagnosis system based on realtime database[J]. Oil-Gasfield Surface Engineering, 2015, 34(3):33-35. doi:10.3969/j.issn.1006-6896.2015.3.018. [8] 陈敬龙,赵江平,席晨睿. 基于自适应支持向量回归机的集输系统压力监测异常值识别[J]. 油气田地面工程, 2017, 36(2):6-9. doi:10.3969/j.issn.1006-6896.2017.2.002 CHEN Jinglong, ZHAO Jiangping, XI Chenrui. Anomaly detection in pressure monitoring data of natural gas gathering system based on adaptive support vector regression[J]. Oil-Gasfield Surface Engineering, 2017, 36(2):6-9. doi:10.3969/j.issn.1006-6896.2017.2.002 [9] 吴高昌,刘强,柴天佑,等. 基于时序图像深度学习的电熔镁炉异常工况诊断[J]. 自动化学报, 2019, 45(8):1475-1485. doi:10.16383/j.aas.c180453 WU Gaochang, LIU Qiang, CHAI Tianyou, et al. Abnormal condition diagnosis through deep learning of image sequences for fused magnesium furnaces[J]. Acta Automatica Sinica, 2019, 45(8):1475-1485. doi:10.16383/j.aas.c180453 [10] 涂思羽,彭平安,蒋元建. 基于深度学习的井下环境异常工况智能识别技术研究[J]. 中国安全生产科学技术, 2018, 14(11):60-65. doi:10.11731/j.issn.1673-193x.2018.11.009 TU Siyu, PENG Pingan, JIANG Yuanjian. Research on intelligent recognition technology of abnormal operating conditions in underground environment based on deep learning method[J]. Journal of Safety Science and Technology, 2018, 14(11):60-65. doi:10.11731/j.issn.1673-193x.2018.11.009 [11] 华丽,于海晨,邵诚,等. 基于SVM-BOXPLOT的乙烯生产过程异常工况监测与诊断[J]. 化工学报,2018,69(3):1053-1063. doi:10.11949/j.issn.0438-1157.20170907 HUA Li, YU Haichen, SHAO Cheng, et al. Monitoring and diagnosis of abnormal condition in ethylene production process based on SVM-BOXPLOT[J]. CIESC Journal, 2018, 69(3):1053-1063. doi:10.11949/j.issn.0438-1157.20170907 [12] 贾桥龙,朱景贺,余睿宏. 浅析天然气集输系统管理与维修[J]. 当代化工研究, 2017(3):157-158. doi:10.3969/j.issn.1672-8114.2017.03.089 JIA Qiaolong, ZHU Jinghe, YU Ruihong. Analysis of the management and maintenance for natural gas gathering and transportation[J]. Modern Chemical Research, 2017(3):157-158. doi:10.3969/j.issn.1672-8114.2017.03.089 [13] 张翔,仝心,王鼎玺. 天然气集输系统数字化分析[J]. 中国化工贸易, 2019, 11(6):13. ZHANG Xiang, TONG Xin, WANG Dingxi. Digital analysis of natural gas gathering and transportation system[J]. China Chemical Trade, 2019, 11(6):13. [14] HUANG Shenjun, RONG Jin, ZHOU Zhihua. Active learning by querying informative and representative examples[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10):1936. doi:10.1109/TPAMI.2014.2307881 [15] 柳锡淼. 天然气长输管网SCADA系统的应用及其优化[J]. 石油工程建设, 2011, 37(1):31-33. doi:10.3969/j.issn.1001-2206.2011.01.008 LIU Ximiao. SCADA system application and optimization for long-distance natural gas pipeline[J]. Petroleum Engineering Construction, 2011, 37(1):31-33. doi:10.3969/j.issn.1001-2206.2011.01.008 [16] 何婷婷. 基于案例推理的焦炉加热过程异常工况智能预报系统研究[D]. 武汉:武汉科技大学, 2010. HE Tingting. Digitalization of natural gas gathering and transportation system[J]. Wuhan:Wuhan University of Science and Technology, 2010. [17] WU Yanxue, MIN Xueyang, MIN Fan, et al. Costsensitive active learning with a label uniform distribution model[J]. International Journal of Approximate Reasoning, 2019, 105:49-65. doi:10.1016/j.ijar.2018.11.004 [18] 李健,赖平. 埋地管道典型异常事件信号特征提取方法研究[J]. 传感技术学报, 2010, 23(7):74-78. doi:10.3969/j.issn.1004-1699.2010.07.016 LI Jian, LAI Ping. Study on feature extraction method for typical abnormal events of buried pipelines[J]. Chinese Journal of Sensors and Actuators, 2010, 23(7):74-78. doi:10.3969/j.issn.1004-1699.2010.07.016 [19] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016. [20] 王志娟,刘飞飞,赵小兵,等. 基于置信度的藏文人名识别的主动学习模型研究[J]. 中文信息学报, 2019, 33(8):53-59. doi:10.3969/j.issn.1003-0077.2019.08.007 WANG Zhijuan, LIU Feifei, ZHAO Xiaobing, et al. Confidence based active learning model for tibetan person name recognition[J]. Journal of Chinese Information Processing, 2019, 33(8):53-59. doi:10.3969/j.issn.1003-0077.2019.08.007 [21] HUANG Ruizhang, LAM Wai. An active learning framework for semi-supervised document clustering with language modeling[J]. Data & Knowledge Engineering, 2009, 68(1):49-67. doi:10.1016/j.datak.2008.08.008 [22] DEMIR B, MINELLO L, BRUZZONE L. A cost-sensitive active learning technique for the definition of effective training sets for supervised classifiers[C]. Munich, Germany:IEEE International Geoscience and Remote Sensing Symposium, 2012. doi:10.1109/IGARSS.2012.6351169 [23] WANG Min, ZHANG Yingyi, MIN Fan. Active learning through multi-standard optimization[J]. IEEE Access, 2019, 7:56772-56784. [24] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496. doi:10.1126/science.1242072 [25] WANG Min, MIN Fan, ZHANG Zhiheng, et al. Active learning through density clustering[J]. Expert Systems with Applications, 2017, 85(5):305-317. doi:10.1016/j.eswa.2017.05.046 [26] BLAKE C, MERZ C J. UCI repository of machine learning databases[C]. Oakland:University of California, 1998. [27] HAN J W, KAMBER M. Data mining concept and techniques[M]. Amsterdam, The Netherlands:Elsevier, 2001. [28] XIANG Zhuoyuan, ZHANG Lei. Research on an optimized C4.5 algorithm based on rough set theory[C]. Management of e-Commerce and e-Government (ICMeCG), 2012. doi:10.1109/ICMeCG.2012.74 [29] QUINLAN J R. Bagging, boosting, and C4.5[C]. AAAI, 1996:725-730. [30] RUAN Yuxun, LIN Hsuantien, TSAI Mingfeng. Improving ranking performance with cost-sensitive ordinal classification via regression[J]. Information Retrieval, 2014, 17(1):1-20. doi:10.1007/s10791-013-9219-2 [31] LIAW A, WIENER M. Classification and regression by random forest[J]. R News, 2002, 2/3:18-22. [32] CAI Yudong, FENG Kaiyan, LU Wencong, et al. Using logit boost classifier to predict protein structural classes[J]. Journal of Theoretical Biology, 2006, 238(1):172-176. doi:10.1016/j.jtbi.2005.05.034 |