[1] TARANTOLA A. Inverse problem theory and methods for model parameter estimation[M]. Beijing:Science Press, 2005. [2] ZOEPPRITZ K. Uber erdbebenwellen II. Laufzeitkurven, nachrichten der Königlichen gesellschaft der wissenschaften zu göttingen[C]. Mathematisch-Physikalische Klasse, 1907, 529-549. [3] BACKUS G, GILBERT F. Uniqueness in the inversion of inaccurate gross earth data[J]. Geophysical Journal International, 1970, 21(3):404. doi:10.1093/gji/21.3.404-a [4] 杨文采. 地球物理反演[J]. 地球科学进展, 1993, 8(2):82-84. YANG Wencai. Geophysical inversion[J]. Advances in Earth Science, 1993, 8(2):82-84. [5] TARANTOLA A G R. Neural networks and inversion of seismic data[J]. Journal of Geophysical Research Atmospheres, 1994, 99(B4):6753-6768. [6] 黄河,任韶萱. 遗传算法及其在速度结构与震源联合反演中的应用[J]. 东北地震研究, 1998, 14(4):1-14. HUANG He, REN Shaoxuan. Genetic algorithms and its application to the simultaneous inversion for velocity structure and focus[J]. Seismological Research of Northeast China, 1998, 14(4):1-14. [7] KUMAR N S, SUBRATA C, KUMAR S S, et al. Velocity inversion in cross-hole seismic tomography by counterpropagation neural network, genetic algorithm and evolutionary programming techniques[J]. Geophysical Journal International, 1999, 138(1):108-124. doi:10.1046/j.1365-246x.1999.00835.x [8] KUZMA H A. Non-linear AVO inversion using support vector machines[C]. SEG Technical Program Expanded Abstracts, 1949, 23(1):2586. doi:10.1190/1.1843305 [9] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. doi:10.1162/neco.2006.18.7.1527 [10] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[C]. Proceedings of the IEEE, 1998, 86(11):2278-2324. doi:10.1109/5.726791 [11] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 11(4):541-551. doi:10.1162/neco. 1989.1.4.541 [12] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of Physiology, 1962, 160(1):106-154. doi:10.1113/jphysiol.1962.sp006837 [13] FUKUSHIMA K. Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4):193-202. doi:10.1007/BF00344251 [14] VISHAL D, POLLACK A, WOLLNER U, et al. Convolutional neural network for seismic impedance inversion[C]. Proceedings of the SEG Technical Program Expanded Abstracts, 2018:2071-2075. doi:10.1190/segam2018-2994378.1 [15] MA Yue, JI Xu, FEI T W, et al. Automatic velocity picking with convolutional neural networks[C]. Proceedings of the SEG Technical Program Expanded Abstracts, 2018:2066-2070. doi:10.1190/segam2018-2987088.1 [16] LEWIS W, VIGH D. Deep learning prior models from seismic images for full-waveform inversion[C]. Proceedings of the SEG Technical Program Expanded Abstracts, 2017:1512-1517. doi:10.1190/segam2017-17627643.1 [17] 邹拓,徐芳. 复杂断块油田开发后期精细地质建模技术对策[J]. 西南石油大学学报(自然科学版), 2015, 37(4):35-40. doi:10.11885/j.issn.1674-5086.2013.12.08.03 ZOU Tuo, XU Fang. Technical strategy for fine geological modeling in later development stage of complex faultblock oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(4):35-40. doi:10.11885/j.issn.1674-5086.2013.12.08.03 [18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. Computer Science, 2014. [19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. doi:10.1109/CVPR.2016.90 [20] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015:1-9. doi:10.1109/CVPR.2015.7298594 [21] BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition[C]. 27th International Conference on Machine Learning (ICML-10), 2010:111-118. doi:10.1107/S0567740876009333 [22] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]. IEEE International Conference on Computer Vision, 2015:1026-1034. doi:10.1109/ICCV.2015.123 [23] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. 27th International Conference on Machine Learning(ICML-10), 2010:807-814. [24] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9:249-256. [25] DIEDERIK K, JIMMY B. Adam:A method for stochastic optimization[C]. San Diego:3rd International Conference for Learning Representations, 2015. [26] 张瑞,刘宗宾,贾晓飞,等. 基于储层构型研究的储层平面非均质性表征[J]. 西南石油大学学报(自然科学版), 2018, 40(5):15-27. doi:10.11885/j.issn.1674-5086.2017.05.02.03 ZHANG Rui, LIU Zongbin, JIA Xiaofei, et al. Reservoir plane heterogeneity characterization based on reservoir architecture research[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(5):15-27. doi:10.11885/j.issn.1674-5086.2017.05.02.03 |