[1] AJAYI K M, SCHATZEL S J. Transport model for shale gas well leakage through the surrounding fractured zones of a longwall mine[J]. International Journal of Mining Science and Technology, 2020, 30(5): 635-641. doi: 10.3969/j.issn.2095-2686.2020.05.008 [2] RAHMATABADI D, SOLTANMOHAMMADI K, PAHLAVANI M, et al. Shape memory performance assessment of FDM 3D printed PLA-TPU composites by BoxBehnken response surface methodology[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(1-2): 935-950. doi: 10.1007/s00170-02311571-2 [3] ABBAS M A, ZAMIR A, ELRAIES K A, et al. A critical parametric review of polymers as shale inhibitors in water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108745. doi: 10.1016/j.petrol.2021.108745 [4] JI Lujun, GUO Quanxin, FRIEDHEIM J, et al. Laboratory evaluation and analysis of physical shale inhibition of an innovative water-based drilling fluid with nanoparticles for drilling unconventional shales[C]. SPE 158895MS, 2012. doi: 10.2118/158895-MS [5] ZHANG L W, ANDERSON N, DILMORE R, et al. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: A 3D numerical modeling approach[J]. Environmental Science and Technology, 2014, 48(18): 10795-10803. doi: 10.1021/es501997p [6] ZHAO Zhen, SUN Jinsheng, LIU Fan, et al. Micro-nano polymer microspheres as a plugging agent in oil-based drilling fluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 673: 131808. doi: 10.1016/j.colsurfa.2023.131808 [7] ZHONG Hanyi, GAO Xin, QIU Zhengsong, et al. Insight into beta-cyclodextrin polymer microsphere as a potential filtration reducer in water-based drilling fluids for high temperature application[J]. Carbohydrate Polymers, 2020, 249(21): 116833. doi: 10.1016/j.carbpol.2020.116833 [8] 汪建军. 功能型复合凝胶自适应堵漏技术研究[D]. 成都:四川大学, 2007. doi: 10.7666/d.y1213063 WANG Jianjun. Research on automatic lost circulation prevention technology of the functional compoud gel[D]. Chengdu: Sichuan University, 2007. doi: 10.7666/d.y1213063 [9] KONG Xiangwei, CHEN Mingzhong, ZHANG Chaoju, et al. Optimization of high temperature-resistant modified starch polyamine anti-collapse water-based drilling fluid system for deep shale reservoir[J]. Molecules, 2022, 27(24): 8936. doi: 10.3390/molecules27248936 [10] 牛磊星,孙平贺. 丙烯酸高吸水膨胀树脂在深部钻探中的堵漏试验[J]. 地质科技情报, 2017, 36(1):208-212. doi: 10.19509/j.cnki.dzkq.2017.0126 NIU Leixing, SUN Pinghe. Experimental study on the plugging of acrylic acid high water absorbing resin in deep drilling[J]. Geological Science and Technology Information, 2017, 36(1): 208-212. doi: 10.19509/j.cnki.dzkq.2017.0126 [11] PEÑAS-CABALLERO M, MARTÍN-CORDÓN J, BARRANCO V, et al. Corrosion control by autonomous selfhealing epoxy coatings based on superabsorbent healing agents[J]. Progress in Organic Coatings, 2023, 182: 107600. doi: 10.1016/j.porgcoat.2023.107600 [12] ZHU Z, SAWUT A, SIMAYI R, et al. Preparation of hypromellose-graft-polyacrylic acid superabsorbent resin by ultraviolet polymerization and its slow-release performance[J]. ACS Applied Polymer Materials, 2024, 6(6): 3128-3138. doi: 10.1021/acsapm.3c02872 [13] 贾丽莉,田陆飞,刘振,等. 堵漏材料研究的进展[J]. 材料研究与应用, 2011, 5(1):14-16, 38. doi: 10.3969/j.issn.1673-9981.2011.01.004 JIA Lili, TIAN Lufei, LIU Zhen, et al. Research progress of lost circulation materials[J]. Materials Research and Application, 2011, 5(1): 14-16, 38. doi: 10.3969/j.issn.1673-9981.2011.01.004 [14] VERRET R J. Method for decreasing lost circulation during well operation US: US6976537B1[P]. 2005. [15] 吴瑞红,孙会娟,周晓霞,等. 淀粉基绿色吸水性树脂的制备及抑尘性能[J]. 安徽化工, 2021, 46(7):57-58, 61. doi: 10.3969/j.issn.1008-553X.2021.06.015 WU Ruihong, SUN Huijuan, ZHOU Xiaoxia, et al. Preparation and dust suppressant properties of green waterabsorbent resin based on starch[J]. Anhui Chemical Industry, 2021, 46(7): 57-58, 61. doi: 10.3969/j.issn.1008553X.2021.06.015 [16] 刘森彪,朱建锋,杜之琳,等. 丙烯酸高吸水性聚合物的室温原位合成与吸/释水性能研究[J]. 陕西科技大学学报, 2023, 41(4):93-96. doi: 10.19481/j.cnki.issn2096398x.2023.04.009 LIU Senbiao, ZHU Jianfeng, DU Zhilin, et al. Study on in-situ room temperature synthesis and water absorption/release properties of acrylic super absorbent polymer[J]. Journal of Shaanxi University of Science & Technology, 2023, 41(4): 93-96. doi: 10.19481/j.cnki.issn2096-398x.2023.04.009 [17] 朱正,赵宇,张东真,等. 3种丙烯酸系列高吸水树脂的吸水性能[J]. 应用化学, 2013, 30(11):1265-1269. doi: 10.3724/SP.J.1095.2013.20581 ZHU Zheng, ZHAO Yu, ZHANG Dongzhen, et al. Water absorbency performance of three kinds of polyacrylate superabsorbent polymer[J]. Chinese Journal of Applied Chemistry, 2013, 30(11): 1265-1269. doi: 10.3724/SP.J.1095.2013.20581 [18] XU Zhe, SUN Jinsheng, LI Li, et al. Development and performance evaluation of a high temperature resistant, internal rigid, and external flexible plugging agent for waterbased drilling fluids[J]. Petroleum, 2023, 9(1): 33-40. [19] 翟科军,范胜,方俊伟,等. 吸水膨胀树脂复合堵漏剂的研发与性能评价[J]. 油田化学, 2021, 38(2):196-230. doi: 10.19346/j.cnki.1000-4092.2021.02.002 ZHAI Kejun, FAN Sheng, FANG Junwei, et al. Development and evaluation of composite plugging agent of water-absorbent swelling resin[J]. Oilfield Chemistry, 2021, 38(2): 196-230. doi: 10.19346/j.cnki.1000-4092.2021.02.002 [20] 李莉,张赛,何强,等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8):41-45. doi: 10.3969/j.issn.1006-7167.2015.08.011 LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 34(8): 41-45. doi: 10.3969/j.issn.1006-7167.2015.08.011 [21] 李强,李志勇,张浩东,等. 响应面法优化纳米材料稳定的泡沫钻井液[J]. 钻井液与完井液, 2020, 37(1):23-30. doi: 10.3969/j.issn.1001-5620.2020.01.004 LI Qiang, LI Zhiyong, ZHANG Haodong, et al. Study on foam drilling fluid stabilized with nanomaterials optimized with RSM[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 23-30. doi: 10.3969/j.issn.1001-5620.2020.01.004 [22] SALEHNEZHAD L, HEYDARI A, FATTAHI M. Experimental investigation and rheological behaviors of water-based drilling mud contained starch-ZnO nanofluids through response surface methodology[J]. Journal of Molecular Liquids, 2019, 276: 417-430. doi: 10.1016/j.molliq.2018.11.142 [23] WEREMFO A, ABASSAH-OPPONG S, ADULLEY F, et al. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources[J]. Journal of the Science of Food and Agriculture, 2023, 103(1): 26-36. doi: 10.1002/jsfa.12121 [24] AQUINO G, BASILICATA M G, CRESCENZI C, et al. Optimization of microwave-assisted extraction of antioxidant compounds from spring onion leaves using BoxBehnken design[J]. Scientific Report, 2023, 13(1): 14923. doi: 10.1038/s41598-023-42303-x [25] BUENAÑO L, ALI E, JAFER A, et al. Optimization by Box-Behnken design for environmental contaminants removal using magnetic nanocomposite[J]. Scientific Reports, 2024, 14(1): 6950. doi: 10.1038/s41598-024-57616-8 [26] NUNES R W, MARTIN J R, JOHNSON J F. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers[J]. Polymer Engineering & Science, 2004, 22(4): 205-228. doi: 10.1002/pen. 760220402 [27] 齐铭策. PAA型丙烯酸系防水堵漏剂的特性及地坪治漏[J]. 新乡学院学报, 1995(1):50-51. QI Mingce. Characteristics of PAA type acrylic waterproofing and plugging agent and floor leakage control[J]. Journal of Xinxiang University, 1995(1): 50-51. [28] 樊鹏飞. WY-CN龙马溪组页岩水平井井壁坍塌失稳机理研究[D]. 成都:西南石油大学, 2016. FAN Pengfei. Research on the mechanism of wellbore collapse and instability in the WY-CN Longmaxi Formation shale horizontal well[D]. Chengdu: Southwest Petroleum University, 2016. |