[1] BUKHAMSEEN N Y, ERTEKIN T. Validating hydraulic fracturing properties in reservoir simulation using artificial neural networks[C]. SPE 188093-MS, 2017. doi:10.2118/188093-MS [2] BANSAL Y, ERTEKIN T, KARPYN Z, et al. Forecasting well performance in a discontinuous tight oil reservoir using artificial neural networks[C]. SPE 164542-MS, 2013. doi:10.2118/164542-MS [3] CHEN P, RAHMAN M M. A novel approach to predict interaction between hydraulic fracture and natural fracture using artificial neural networks[C]. SPE 176143-MS, 2015. doi:10.2118/176143-MS [4] LEE K, LIM J, YOON D, et al. Prediction of shale-gas production at Duvernay formation using deep-learning algorithm[C]. SPE 195698-PA, 2019. doi:10.2118/195698-PA [5] RANJAN A, VERMA S, SINGH Y. Gas lift optimization using artificial neural network[C]. SPE 172610-MS, 2015. doi:10.2118/172610-MS [6] AMIRIAN E, CHEN Zhangxin. Practical application of data-driven modeling approach during waterflooding operations in heterogeneous reservoirs[C]. SPE 174031-MS, 2015. doi:10.2118/174031-MS [7] 刘洪,赵金洲,胡永全,等. 用T-S模型模糊神经网络进行压裂效果预测[J]. 断块油气田, 2002, 9(3):35-38. doi:10.3969/j.issn.1005-8907.2002.03.011 LIU Hong, ZHAO Jinzhou, HU Yongquan, et al. Post-frac effect forecasting using the fuzzy neural network[J]. FaultBlock Oil & Gas Field, 2002, 9(3):35-38. doi:10.3969/j.issn.1005-8907.2002.03.011 [8] 李哲,杨兆中,陈锐. 数据挖掘技术在压裂施工中的应用研究[J]. 天然气工业, 2004, 24(11):52-54, 57. doi:10.3321/j.issn:1000-0976.2004.11.015 LI Zhe, YANG Zhaozhong, CHEN Rui. Application of data mining techinque in fracturing operation[J]. Natural Gas Industry, 2004, 24(11):52-54, 57. doi:10.3321/j.issn:1000-0976.2004.11.015 [9] 蒋廷学,汪永利,丁云宏,等. 压裂方案经济优化的智能专家系统研究[J]. 石油学报, 2004, 25(1):66-69. doi:10.3321/j.issn:0253-2697.2004.01.014 JIANG Tingxue, WANG Yongli, DING Yunhong, et al. Expert system for economic optimization of hydraulic fracturing design[J]. Acta Petrolei Sinica, 2004, 25(1):66-69. doi:10.3321/j.issn:0253-2697.2004.01.014 [10] CHRISTIAN O, GERHARD R, GEORG Z, et al. New tools for fracture design optimization[C]. SPE 86467-MS, 2004. doi:10.2118/86467-MS [11] 孟庆民,刘恩新,孙辉,等. 浊积岩储层压裂效果数据挖掘研究[J]. 石油天然气学报, 2014, 36(1):92-95. doi:10.3969/j.issn.1000-9752.2014.01.019 MENG Qingmin, LIU Enxin, SUN Hui, et al. Data mining research on fracturing effect of turbidite reservoir[J]. Journal of Petroleum and Natural Gas, 2014, 36(1):92-95. doi:10.3969/j.issn.1000-9752.2014.01.019 [12] 郭建春,邹一锋,邓齐,等. 利用支持向量机优化压裂加砂规模研究[J]. 西南石油大学学报(自然科学版), 2009, 31(5):79-82. doi:10.3863/j.issn.1674-5086.2009.05.016 GUO Jianchun, ZOU Yifeng, DENG Qi, et al. The study on optimizing the proppant quantity in fracturing by SVM[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(5):79-82. doi:10.3863/j.issn.1674-5086.2009.05.016 [13] 刘洪,黄桢,王峰,等. 基于免疫系统原理的RBF神经网络及其压裂优化设计应用[J]. 钻采工艺, 2009, 32(2):47-50. doi:10.3969/j.issn.1006-768X.2009.02.017 LIU Hong, HUANG Zhen, WANG Feng, et al. A novel RBF neural network and its application in optimizing fracturing design[J]. Drilling & Production Technology, 2009, 32(2):47-50. doi:10.3969/j.issn.1006-768X.2009.02.017 [14] 欧阳传湘,涂志勇,付蓉,等. BP神经网络预测压裂井施工参数的研究[J]. 新疆石油天然气, 2009, 5(3):40-44. doi:10.3969/j.issn.1673-2677.2009.03.011 OUYANG Chuanxiang, TU Zhiyong, FU Rong, et al. Study of prediction of fracturing well operation parameters by BP neural network[J]. Xinjiang Oil & Gas, 2009, 5(3):40-44. doi:10.3969/j.issn.1673-2677.2009.03.011 [15] 姚广聚,彭红利,肖倩,等. 基于BP神经网络的压裂施工参数优化方法[J]. 中国西部油气地质, 2006(4):454-456. YAO Guangju, PENG Hongli, XIAO Qian, et al. Optimizing fracturing parameter by BP neural network[J]. West China Petroleum Geosciences, 2006(4):454-456. [16] 王少英. 基于智能计算的水力压裂施工参数优化[J]. 山东工业技术, 2017(24):79, 82. doi:10.16640/j.cnki.37-1222/t.2017.24.070 WANG Shaoying. Optimization of hydraulic fracturing operation parameters based on intelligent calculation[J]. Shandong Industrial Technology, 2017(24):79, 82. doi:10.16640/j.cnki.37-1222/t.2017.24.070 [17] 朱乔木,李弘毅,王子琪,等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术,2017,41(12):3797-3802. doi:10.13335/j.1000-3673.pst.2017.1657 ZHU Qiaomu, LI Hongyi, WANG Ziqi, et al. Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41(12):3797-3802. doi:10.13335/j.1000-3673.pst.2017.1657 [18] 何晓群. 多元统计分析[M]. 4版. 北京:中国人民大学出版社, 2015. HE Xiaoqun. Multivariate statistical analysis[M]. 4th ed. Beijing:China Renmin University Press, 2015. [19] 刘慧婷,倪志伟,李建洋. 经验模态分解方法及其实现[J]. 计算机工程与应用, 2006, 42(32):44-47. doi:10.3321/j.issn:1002-8331.2006.32.014 LIU Huiting, NI Zhiwei, LI Jianyang. Empirical mode decomposition method and its implementation[J]. Computer Engineering and Application, 2006, 42(32):44-47. doi:10.3321/j.issn:1002-8331.2006.32.014 [20] 王小川,史峰,郁磊,等. MATLAB神经网络43个案例分析[M]. 北京:北京航空航天大学出版社, 2013. WANG Xiaochuan, SHI Feng, YU Lei, et al. Analysis of 43 cases by MATLAB neural network[M]. Beijing:Beihang University Press, 2013. [21] 阎平凡,张长水. 人工神经网络与模拟进化计算[M]. 北京:清华大学出版社, 2005. YAN Pingfan, ZHANG Changshui. Artificial neural network and simulated evolutionary computation[M]. Beijing:Tsinghua University Press, 2005. |