西南石油大学学报(社会科学版) ›› 2019, Vol. 21 ›› Issue (1): 8-13.DOI: 10.11885/j.issn.1674-5094.2018.09.26.03

• 能源发展研究 • 上一篇    下一篇

基于偏最小二乘回归分析的油田操作成本预测——以DX油田为例

陈武1, 吴焘宏1, 陈尘2, 马梦晓2   

  1. 1. 西南石油大学经济管理学院, 四川 成都 610500;
    2. 中石油西南油气田分公司勘探开发研究院, 四川 成都 610041
  • 收稿日期:2018-09-26 出版日期:2019-01-01 发布日期:2019-01-01
  • 通讯作者: 吴焘宏(1994-),男(汉族),四川达州人,硕士研究生,研究方向:管理科学。
  • 作者简介:陈武(1963-),男(汉族),四川南充人,教授,研究方向:管理科学、统计学。
  • 基金资助:
    国家科技重大专项"特高含水后期整装油田延长经济寿命期开发技术"(2016ZX0511-001);四川省软科学研究计划项目"多重视域下四川天然气产业可持续发展研究"(2018ZR0072)。

Prediction of Oilfield Operation Cost Through Partial Least Squares Regression——A Case Study on DX Oilfield

CHEN Wu1, WU Taohong1, CHEN Chen2, MA Mengxiao2   

  1. 1. School of Economics and Management, Southwest Petroleum University, Chengdu Sichuan, 610500, China;
    2. Research Institute of Exploration and Development, Southwest Oil and Gas Field Branch, PetroChina, Chengdu Sichuan, 610041, China
  • Received:2018-09-26 Online:2019-01-01 Published:2019-01-01

摘要: 偏最小二乘回归分析通过从自变量和因变量数据表中提取包含原数据变异信息的成分来建立回归模型,能够解决回归建模过程中由于自变量之间的高度相关关系而引起的多重共线性问题。以油田操作成本为研究对象,以操作成本为因变量,选取产液量、产油量、注水量、含水率、措施工作量、工业品购进价格指数、电力价格等7个因素为自变量,以DX油田2010年至2016年的实际数据为基础,对DX油田各自变量指标进行偏最小二乘回归分析,建立回归预测模型,并对该模型进行验证。结果表明,自变量指标对操作成本的解释能力达到了0.99902,模型具有较高的可靠性。这一情况说明,将偏最小二乘回归分析应用于油田操作成本预测具有可行性。

关键词: 偏最小二乘回归, 回归模型, 回归预测模型, 油田操作成本, SIMCA-P软件

Abstract: Partial least squares regression analysis establishes a regression model by extracting the components containing the original data variation information from the independent variable and dependent variable data table,which can solve the problem of multiple collinearity due to the high correlation between the independent variables in the regression modeling process. With oil field operation cost as the research object, and operating cost as the dependent variable, we analyze the partial data of the DX Oilfield's variables through partial least squares regression analysis by using SIMCA-P software. The regression prediction model is established and tested. The results show that the independent variable index has an explanatory power of 0.99902, and the model has very high reliability. This research shows that partial least squares regression method is applicable to the prediction of oilfield operation cost, and can be used for reference in other research objects.

Key words: partial least squares regression, regression model, regression prediction model, oilfield operating cost, SIMCA-P software

中图分类号: