西南石油大学学报(自然科学版) ›› 2020, Vol. 42 ›› Issue (5): 86-98.DOI: 10.11885/j.issn.1674-5086.2020.06.17.03

• 石油与天然气工程 • 上一篇    下一篇

宁209井区裂缝控藏体积压裂技术研究与应用

乐宏1, 杨兆中2, 范宇1   

  1. 1. 中国石油西南油气田分公司, 四川 成都 610051;
    2. 油气藏地质及开发工程国家重点实验室·西南石油大学, 四川 成都 610500
  • 收稿日期:2020-06-17 出版日期:2020-10-10 发布日期:2020-10-10
  • 通讯作者: 杨兆中,E-mail:yzzycl@vip.sina.com
  • 作者简介:乐宏,1965年生,男,汉族,重庆忠县人,教授级高级工程师,博士,主要从事油气井工程技术方面的研究与管理工作。E-mail:le_hong@petrochina.com.cn;杨兆中,1969年生,男,汉族,四川泸州人,教授,博士生导师,主要从事低渗透油气藏增产改造与油气藏数值模拟方面的教学和科研工作。E-mail:yzzycl@vip.sina.com;范宇,1979年生,男,汉族,四川南部人,高级工程师,主要从事油气井钻井及压裂技术研究。E-mail:fanyu@petrochina.com.cn
  • 基金资助:
    国家科技重大专项(2016ZX05062004)

Research and Application of Volume Fracturing Technology Fracture Control in Ning 209 Area

YUE Hong1, YANG Zhaozhong2, FAN Yu1   

  1. 1. Southwest Oil & Gas Field Company, PetroChina, Chengdu, Sichuan 610051, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2020-06-17 Online:2020-10-10 Published:2020-10-10

摘要: 为了解决页岩气开发面临的改造体积有限、产量递减快及储量动用程度低等难题,提出裂缝控藏体积压裂工艺技术。该技术通过减小簇间距、增加裂缝条数来加大缝控面积,形成连片控制区域,立体动用储层,大幅度提高一次可采储量。对该技术进行工艺设计优化,通过精细分段优化射孔位置、孔眼节流优化射孔孔数、渗流和应力干扰优化簇间距、气水置换和高强度加砂优选纳米压裂液、有效压力优化支撑剂、实验回归优化暂堵剂用量,优化结果为:6簇射孔,每簇6孔×60°×6孔/ft,簇间距6~8 m,单段段长40~50 m;采用纳米压裂液体系,先纳米滑溜水段塞打磨,后纳米线性胶连续加砂,加砂强度大于3.0 t/m;采用70/140目石英砂+40/70目陶粒(3:7)小粒径组合支撑剂,可适当提升石英砂比例。该技术在长宁地区宁209X-x井进行试验应用,折算1 500 m水平段测试产量26.6×104 m3/d,相比邻井提升103%,增产效果显著,为页岩气井的高效开发提供借鉴。

关键词: 页岩气, 裂缝控藏, 体积压裂, 优化设计, 纳米压裂液

Abstract: In order to solve the problems in shale gas development, such as limited fracturing volume, rapid production decline and low reserve production ratio, this paper puts forward volume fracturing technology of fracture control reservoir. By reducing the cluster spacing and increasing the number of fractures, the technology can increase the fracture control area, form a continuous control area, develop the reservoir three dimensionally, and greatly improve the primary recoverable reserves. Optimize the process design of the technology, optimize the perforation location by fine segmentation, optimize the number of perforations by perforation throttling, optimize the cluster spacing by seepage and stress interference, optimize the nanometer fracturing fluid by gas water replacement and increasing the amount of sand, optimize the proppant by effective pressure, and optimize the amount of temporary plugging agent by experimental regression. The optimization results are 6 clusters, 1 cluster of 6 holes×60°×6 holes/foot, cluster spacing of 6~8 m, and segment length of 40~50 m; using nanometer fracturing fluid system, nanometer slippery water polishing, nanometer linear glue continuous injected sand, the added sand strength is greater than 3.0 t/m; a combination of 70/140 mesh quartz sand +40/70 mesh ceramsite (3:7) with a small particle size used; the proportion of quartz sand is appropriately increased. This technology has been applied in Well 209X-x of Changning area, and the gas production converted to 1 500 m horizontal section is 26.6×104 m3/d, which is 103% higher than adjacent wells. This technology has obvious stimulation effect and can provide reference for shale gas well efficient development.

Key words: shale gas, fracture control reservoir, volume fracturing, optimum design, nanometer fracturing fluid

中图分类号: