[1] 周军,胡承强,彭井宏,等. 基于腔体稳定性的盐岩储气库注采方案优化研究[J]. 断块油气田, 2023, 30(1):161-167. doi:10.6056/dkyqt202301023 ZHOU Jun, HU Chengqiang, PENG Jinghong, et al. Optimization of injection and production scheme of salt gas storage based on cavity stability[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 161–167. doi: 10.6056/dkyqt2023-01023 [2] 雷鸣,王丹丹,邱小松,等. 基于ANSYS的断层安全性评价方法及应用——以苏北盆地东台坳陷白驹含水层储气库为例[J]. 石油实验地质, 2022, 44(5):904-913. doi:10.11781/sysydz202205904 LEI Ming, WANG Dandan, QIU Xiaosong, et al. Evaluation method for fault safety and its application based on ANSYS: A case study of Baiju aquifer gas storage in Dongtai Depression, Subei Basin[J]. Petroleum Geology and Experiment, 2022, 44(5): 904–913. doi: 10.11781/sys ydz202205904 [3] 王泽根,窦可璞,杨莹辉. 呼图壁地下储气库地表形变模式与机理研究[J]. 西南石油大学学报(自然科学版), 2022, 44(1):79-90. doi:10.11885/j.issn.1674-5086.2019.11.22.03 WANG Zegen, DOU Kepu, YANG Yinghui. A study on pattern and mechanism of surface deformation of underground gas storage in Hutubi[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(1): 79–90. doi: 10.11885/j.issn.1674-5086.2019.11.22. 03 [4] 李玥洋,田园媛,曹鹏,等. 储气库建设条件筛选与优化[J]. 西南石油大学学报(自然科学版), 2013, 35(5):123-129. doi:10.3863/j.issn.1674-5086.2013.05.017 LI Yueyang, TIAN Yuanyuan, CAO Peng, et al. Construction of underground gas storage conditions for screening and optimization[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(5): 123–129. doi: 10.3863/j.issn.1674-5086.2013.05.017 [5] 朱荣强,于连兴,王进军,等. 盐穴地下储气库地面工程工艺技术[J]. 煤气与热力, 2015, 35(3):47-52. doi:10.3969/j.issn.1000-4416.2015.03.013 ZHU Rongqiang, YU Lianxing, WANG Jinjun, et al. Process technology of surface engineering of salt cavern underground gas storage reservoir[J]. Gas & Heat, 2015, 35(3): 47–52. doi: 10.3969/j.issn.1000-4416.2015.03.013 [6] 陶卫方,王永发,岳克敬,等. 水淹油气藏改建储气库注采工艺联合运行技术[J]. 天然气工业, 2011, 31(5):93-95. doi:10.3787/j.issn.1000-0976.2011.05.025 TAO Weifang, WANG Yongfa, YUE Kejing, et al. Combined operation technology of gas injection and production process in underground gas storage based on flooded hydrocarbon reservoirs[J]. Natural Gas Industry, 2011, 31(5): 93–95. doi: 10.3787/j.issn.1000-0976.2011.05.025 [7] 刘子兵,张文超,林亮,等. 长庆气区榆林气田南区地下储气库建设地面工艺[J]. 天然气工业, 2010, 30(8):76-78. doi:10.3787/j.issn.1000-0976.2010.08.020 LIU Zibing, ZHANG Wenchao, LIN Liang, et al. Ground technology for the construction of underground gas storage in the southern Yulin Gas Field, Changqing Gas Zone[J]. Natural Gas Industry, 2010, 30(8): 76–78. doi: 10.3787/j.issn.1000-0976.2010.08.020 [8] 李继强,赵冠群,戚志林,等. 气藏型储气库多周期注采储集层应力敏感效应[J]. 石油勘探与开发, 2021, 48(4):835-842. doi:10.11698/PED.2021.04.16 LI Jiqiang, ZHAO Guanqun, QI Zhilin, et al. Stress sensitivity of formation during multi-cycle gas injection and production in an underground gas storage rebuilt from gas reservoirs[J]. Petroleum Exploration and Development, 2021, 48(4): 835–842. doi: 10.11698/PED.2021.04.16 [9] 廖伟,刘国良,陈如鹤,等. 气藏型地下储气库动态密封性评价——以新疆H地下储气库为例[J]. 天然气工业, 2021, 41(3):133-141. doi:10.3787/j.issn.1000-0976.2021.03.016 LIAO Wei, LIU Guoliang, CHEN Ruhe, et al. Evaluation on the dynamic sealing capacity of underground gas storages rebuilt from gas reservoirs: A case study of Xinjiang H underground gas storage[J]. Natural Gas Industry, 2021, 41(3): 133–141. doi: 10.3787/j.issn.1000-0976.2021.03.016 [10] 蒋洪,杨昌平,朱聪. 天然气脱水装置工艺分析与改进[J]. 天然气化工, 2009, 34(6):49-53, 58. doi:10.3969/j.issn.1001-9219.2009.06.013 JIANG Hong, YANG Changping, ZHU Cong. Process analysis and improvement for natural gas dehydration unit[J]. Natural Gas Chemical Industry, 2009, 34(6): 49-53, 58. doi: 10.3969/j.issn.1001-9219.2009.06.013 [11] 何彬,吴家文,崔红霞,等. 地下储气库地面工艺参数及气井流量计量技术[J]. 石油钻采工艺, 2011, 33(3):101-105. doi:10.3969/j.issn.1000-7393.2011.03.027 HE Bin, WU Jiawen, CUI Hongxia, et al. Research on ground technological parameters and gas well flow metering for natural gas underground storage[J]. Oil Drilling & Production Technology, 2011, 33(3): 101–105. doi: 10.3969/j.issn.1000-7393.2011.03.027 [12] 刘岩,程林. 盐穴储气库地面工程技术要点研究[J]. 油气田地面工程,2019,38(2):65-69,76. doi:10.3969/j.issn.1006-6896.2019.02.013 LIU Yan, CHENG Lin. Key point study on the surface engineering technology of salt cavern gas storages[J]. OilGasfield Surface Engineering, 2019, 38(2): 65–69, 76. doi: 10.3969/j.issn.1006-6896.2019.02.013 [13] 陈月娥,张湘玮,徐长峰,等. 呼图壁储气库天然气脱水工艺优化[J]. 油气田地面工程, 2021, 40(6):32-40. doi:10.3969/j.issn.1006-6896.2021.06.007 CHEN Yue'e, ZHANG Xiangwei, XU Changfeng, et al. Optimization of natural gas dehydration process in Hutubi Gas Storage[J]. Oil-Gasfield Surface Engineering, 2021, 40(6): 32–40. doi: 10.3969/j.issn.1006-6896.2021.06.007 [14] 王丽,张地洪,向新华,等. 影响天然气水合物形成因素的实验研究[J]. 天然气工业,2002,22(z1):118-121. doi:10.3321/j.issn:1000-0976.2002.z1.030 WANG Li, ZHANG Dihong, XIANG Xinhua, et al. Experimental research on the factors influencing natural gas hydrate formation[J]. Natural Gas Industry, 2002, 22(z1): 118–121. doi: 10.3321/j.issn:1000-0976.2002.z1.030 [15] 赵欢娟,夏勇,张迪,等. 杂质对三甘醇脱水能力的影响研究[J]. 天然气化工(C1化学与化工),2016,41(2):47-51. doi:10.3969/j.issn.1001-9219.2016.02.012 ZHAO Huanjuan, XIA Yong, ZHANG Di, et al. Influence of contaminants on TEG dehydration performance[J]. Natural Gas Chemical Industry, 2016, 41(2): 47–51. doi: 10.3969/j.issn.1001-9219.2016.02.012 [16] 金祥哲,张宁生,吴新民,等. 污染物对三甘醇脱水性和发泡性影响的研究[J]. 天然气工业, 2005, 25(10):97-98, 105. doi:10.3321/j.issn:1000-0976.2005.10.033 JIN Xiangzhe, ZHANG Ningsheng, WU Xinmin, et al. Influence of contaminations on dehydration and foaming performance for TEG[J]. Natural Gas Industry, 2005, 25(10): 97–98, 105. doi: 10.3321/j.issn:1000-0976.2005.10.033 [17] 郭彬,何战友,刘学蕊,等. 三甘醇失效原因分析及回收研究[J]. 天然气工业, 2006, 26(9):152-153. doi:10.3321/j.issn:1000-0976.2006.09.047 GUO Bin, HE Zhanyou, LIU Xuerui, et al. Study on the reason of TEG vitiation and its recycling technology[J]. Natural Gas Industry, 2006, 26(9): 152–153. doi: 10.3321/j.issn:1000-0976.2006.09.047 [18] BAHADORI A, VUTHALURU H. Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems[J]. Energy, 2009, 34(11): 1910–1916. doi: 10.1016/j.energy.2009.07.047 [19] 单永康,蒋洪,魏士军,等. 三甘醇脱水工艺中BTEX分布模拟与研究[J]. 天然气化工, 2018, 43(4):92-97. doi:10.3969/j.issn.1001-9219.2018.04.019 SHAN Yongkang, JIANG Hong, WEI Shijun, et al. BTEX distribution in the TEG dehydration process[J]. Natural Gas Chemical Industry, 2018, 43(4): 92–97. doi: 10.3969/j.issn.1001-9219.2018.04.019 [20] 荆国林,叶萍,吕广博. 三甘醇再生废气处理工艺研究[J]. 化工科技, 2015, 23(5):24-26. doi:10.3969/j.issn.1008-0511.2015.05.006 JING Guolin, YE Ping, LÜ Guangbo. Investigation on treatment process of TEG regenerating waste gas[J]. Science & Technology in Chemical Industry, 2015, 23(5): 24–26. doi: 10.3969/j.issn.1008-0511.2015.05.006 [21] 王瑞,褚雅志,王领,等. 组合式气液分离器的结构研究[J]. 现代化工, 2013, 33(12):88-91. WANG Rui, CHU Yazhi, WANG Ling, et al. Study on structure of combined gas-liquid separator[J]. Modern Chemical Industry, 2013, 33(12): 88–91. [22] 任众鑫,王多才,蒋平,等. 考虑结盐影响的储气库注采气井产能评价方法[J]. 断块油气田, 2023, 30(4):552-558. doi:10.6056/dkyqt202304004 REN Zhongxin, WANG Duocai, JIANG Ping, et al. Productivity evaluation method of gas injection-production wells in gas storage considering the effect of salt deposition[J]. Fault-Block Oil and Gas Field, 2023, 30(4): 552–558. doi: 10.6056/dkyqt202304004 [23] 余金陵,魏新芳. 胜利油田智能完井技术研究新进展[J]. 石油钻探技术, 2011, 39(2):68-72. doi:10.3969/j.issn.1001-0890.2011.02.013 YU Jinling, WEI Xinfang. New development of intelligent well completion technology in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2011, 39(2): 68–72. doi: 10.3969/j.issn.1001-0890.2011.02.013 [24] 何明格,马发明,林丽君,等. 井下智能节流器的设计与节流阀流场分析[J]. 现代化工, 2013, 41(6):85-89. doi:10.3969/j.issn.1001-4578.2013.06.020 HE Mingge, MA Faming, LIN Lijun, et al. Design and flow field analysis of downhole intelligent throttle[J]. China Petroleum Machinery, 2013, 41(6): 85–89. doi: 10.3969/j.issn.1001-4578.2013.06.020 |