[1] 徐同台,刘玉杰,申威. 钻井工程防漏堵漏技术[M]. 北京:石油工业出版社,1997. XU Tongtai, LIU Yujie, SHEN Wei. Technology of lost circulation prevention and control during drilling engineering[M]. Beijing:Petroleum Industry Press, 1997. [2] 苏晓明,练章华,方俊伟,等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发,2019,46(1):165-172. doi:10.11698/PED.2019.01.17 SU Xiaoming, LIAN Zhanghua, FANG Junwei, et al. Loss control material for fractured-vuggy carbonate reservoirs of high temperature and pressure in Tazhong Block, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(1):165-172. doi:10.11698/PED.2019.01.17 [3] 康毅力,王凯成,许成元,等. 深井超深井钻井堵漏材料高温老化性能评价[J]. 石油学报,2019,40(2):215-223. doi:10.7623/syxb201902010 KANG Yili, WANG Kaicheng, XU Chengyuan, et al. High-temperature aging property evaluation of lost circulation materials in deep and ultra-deep well drilling[J]. Acta Petrolei Sinica, 2019, 40(2):215-223. doi:10.7623/syxb201902010 [4] 李家学,黄进军,罗平亚,等. 裂缝性地层随钻刚性颗粒封堵机理与估算模型[J]. 石油学报,2011,32(3):509-513. doi:10.7623/syxb201103022 LI Jiaxue, HUANG Jinjun, LUO Pingya, et al. Plugging mechanism of estimation model of rigid particles while drilling in fractured formation[J]. Acta Petrolei Sinica, 2011, 32(3):509-513. doi:10.7623/syxb201103022 [5] KANG Yili, XU Chengyuan, YOU Lijun, et al. Temporary sealing technology to control formation damage induced by drill-in fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 20(1):67-73. doi:10.1016/j.jngse.2014.06.016 [6] YAN Xiaopeng, KANG Yili, YOU Lijun, et al. Drill-in fluid loss mechanisms in brittle gas shale:A case study in the Longmaxi Formation, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 174, 394-405. doi:10.1016/j.petrol.2018.11.026 [7] ASTON M, ALBERTY M W, MCLEAN M R, et al. Drilling fluid for wellbore strengthening[C]. SPE 87130-MS, 2004. doi:10.2118/87130-MS [8] FRED E. Fracture closure stress and lost returns practices[C]. SPE 92192-MS, 2005. doi:10.2118/92192-MS [9] DUPRIEST F E. Use of new hydrostatic packer concept to manage lost returns, well control, and cement placement in field operations[C]. SPE 112657-PA, 2009. doi:10. 2118/112657-PA [10] OORT E, FRIEDHEIM J E, PIERCE T, et al. Avoiding losses in depleted and weak zones by constantly strengthening wellbores[C]. SPE 125093-MS, 2011. doi:10.2118/125093-MS [11] MORITA N, FUH G F. Parametric analysis of wellbore-strengthening methods from basic rock mechanics[C]. SPE 145765-PA, 2012. doi:10.2118/145765-PA [12] 王贵,蒲晓林. 提高地层承压能力的钻井液堵漏作用机理[J]. 石油学报,2010,31(6):1009-1012. doi:10.7623/syxb201006024 WANG Gui, PU Xiaolin. Plugging mechanism of drilling fluid by enhancing wellbore pressure[J]. Acta Petrolei Sinica, 2010, 31(6):1009-1012. doi:10.7623/syxb201006024 [13] KANG Yili, XU Chengyuan, YOU Lijun, et al. Comprehensive evaluation of formation damage induced by working fluid loss in fractured tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 18(1):353-359. doi:10.1016/j.jngse.2014.03.016 [14] YANG Chen, ZHOU Fujian, WEI Feng, et al. Plugging mechanism of fibers and particulates in hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2019, 176:396-402. doi:10.1016/j.petrol.2019.01.084 [15] YANG Xianyu, CHEN Shuya, SHI Yanping, et al. CFD and DEM modelling of particles plugging in shale pores[J]. Energy, 2019, 174:1026-1038. doi:10.1016/j.energy.2019.03.050 [16] FENG Y, LI G, MENG Y. A coupled CFD-DEM numerical study of lost circulation material transport in actual rock fracture flow space[C]. SPE 191098-MS, 2014. doi:10.2118/191098-MS [17] CALÇADA L A, DUQUE N, MAGALHÃES S, et al. Evaluation of suspension flow and particulate materials for control of fluid losses in drilling operation[J]. Journal of Petroleum Science and Engineering, 2015, 131(1):1-10. doi:10.1016/j.petrol.2015.04.007 [18] XU Chengyuan, YAN Xiaopeng, KANG Yili, et al. Friction coefficient:A significant parameter for lost circulation control and material selection in naturally fractured reservoir[J]. Energy, 2019, 174:1012-1025. doi:10. 1016/j.energy.2019.03.017 [19] KUMAR A, SAVARI S, JAMISON D E, et al. Wellbore strengthening:The less-studied properties of lost-circulation materials[C]. SPE 133484-MS, 2010. doi:10.2118/133484-MS [20] 康毅力,许成元,唐龙,等. 构筑井周坚韧屏障:井漏控制理论与方法[J]. 石油勘探与开发,2014,41(4):473-479. doi:10.11698/PED.2014.04.13 KANG Yili, XU Chengyuan, TANG Long, et al. Constructing a tough shield around the wellbore:Theory and method for lost-circulation control[J]. Petroleum Exploration and Development, 2014, 41(4):473-479. doi:10.11698/PED.2014.04.13 [21] 许成元.裂缝性储层强化封堵承压能力模型与方法[D].成都:西南石油大学,2015. XU Chengyuan. Models and methods to strengthen wellbore pressure containment by fracture plugging in fractured reservoirs[D]. Chengdu:Southwest Petroleum University, 2015. [22] XU Chengyuan, KANG Yili, CHEN Fei, et al. Analytical model of plugging zone strength for drill-in fluid loss control and formation damage prevention in fractured tight reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 149:686-700. doi:10.1016/j.petrol.2016.10.069 [23] 邱正松,刘均一,周宝义,等. 钻井液致密承压封堵裂缝机理与优化设计[J]. 石油学报,2016,37(S2):137-143. doi:10.7623/syxb2016S2017 QIU Zhengsong, LIU Junyi, ZHOU Baoyi, et al. Tight fracture-plugging mechanism and optimized design for plugging drilling fluid[J]. Acta Petrolei Sinica, 2016, 37(S2):137-143. doi:10.7623/syxb2016S2017 [24] 邱正松,暴丹,刘均一,等. 裂缝封堵失稳微观机理及致密承压封堵实验[J]. 石油学报,2018,39(5):587-596. doi:10.7623/syxb201805010 QIU Zhengsong, BAO Dan, LIU Junyi, et al. Microcosmic mechanism of fracture-plugging instability and experimental study on pressure bearing and tight plugging[J]. Acta Petrolei Sinica, 2018, 39(5):587-596. doi:10.7623/syxb201805010 [25] 佘继平. 页岩井周地层-封堵带系统突变失稳机理[D]. 成都:西南石油大学,2016. SHE Jiping. Catastrophic instability mechanism to system consisted of plugging zone and rock in shale formation[D]. Chengdu:Southwest Petroleum University, 2016. [26] 严琳,杨长辉,王冲. 粗骨料颗粒形状指数、级配对自密实混凝土工作性能的影响[J]. 混凝土,2011(1):75-77. YAN Lin, YANG Changhui, WANG Chong. Influence of coarse aggregates' shape index and gradation in self-compacting concrete's rheological behavior and working performance[J]. Concrete, 2011(1):75-77. [27] 王锦生,祁海鹰,易先中,等. 规则非球形颗粒的形状描述与沉降特性[C]. 青岛:中国工程热物理学会2008多项流学术会议,2008. WANG Jinsheng, QI Haiying, YI Xianzhong, et al. Shape description and settling characteristics of regular non-spherical particles[C]. Qingdao:Chinese Society of Engineering Thermophysics Multiphase Flow Conference, 2008. [28] 韩其为,何明民. 泥沙运动统计理论[M]. 北京:科学出版社,1984. HAN Qiwei, HE Mingmin. Statistical theory of sediment movement[M]. Beijing:Science Press, 1984. [29] MANDELBORT B B. The fractal geometry of nature[J]. American Journal of Physics, 1983, 51:286. doi:10.1119/1.13295 [30] 陈江峰,王振芬,闫纯忠. 碎屑颗粒圆度的分形描述[J]. 煤田地质勘探,2002,30(4):16-17. doi:10.3969/j.issn.1001-1986.2002.04.006 CHEN Jiangfeng, WANG Zhenfen, YAN Chunzhong. Fractal description of the roundness of clastic particles[J]. Coal Geology & Exploration, 2002, 30(4):16-17. doi:10.3969/j.issn.1001-1986.2002.04.006 [31] 穆在勤,龙期威. 由面积-周长关系测量的分形维数与材料韧性的关系[J]. 材料科学进展,1989,3(2):110-114. MU Zaiqin, LONG Qiwei. Relationship between fractal dimension and material toughness as measured by the area-perimeter relationship[J]. Advances in Materials Science, 1989, 3(2):110-114. [32] 穆在勤,龙期威,康雁. 测量断口分维的周长-最大直径方法[J]. 材料科学进展,1992,6(3):227-231. MU Zaiqin, LONG Qiwei, KANG Yan. Girth-maximum diameter method for measuring fractal dimension of fracture[J]. Advances in Materials Science, 1992, 6(3):227-231. [33] 侯明勋,房营光,谷任国,等. 聚碳酸酯光弹颗粒材料的加工退火及退火后的基本性能[J]. 高分子材料科学与工程,2015,31(3):100-105. HOU Mingxun, FANG Yingguang, GU Renguo, et al. Processing and annealing of polycarbonate photo-elastic particle and its basic performance before and after annealing[J]. Polymer Materials Science and Engineering, 2015, 31(3):100-105. [34] ZADEH A A, BARÉS J, BRZINSKI T A, et al. Enlightening force chains:A review of photo-elasticimetry in granular matter[J]. Granular Matter, 2019, 21(4):82-94. doi:10.1007/s10035-019-0942-2 [35] 康毅力,张敬逸,许成元,等. 刚性堵漏材料几何形态对其在裂缝中滞留行为的影响[J]. 石油钻探技术,2018,46(5):26-34. doi:10.11911/syztjs.2018086 KANG Yili, ZHANG Jingyi, XU Chengyuan, et al. The effect of geometrical morphology of rigid lost circulation material on its retention behavior in fractures[J]. Petroleum Drilling Techniques, 2018, 46(5):26-34. doi:10.11911/syztjs.2018086 [36] YAN Xiaopeng, XU Chengyuan, KANG Yili, et al. Mesoscopic structure characterization of plugging zone for lost circulation control in fractured reservoirs based on photoelastic experiment[J]. Journal of Natural Gas Science and Engineering, 2020, 79:103339. doi:10.1016/j.jngse.2020.103339 [37] XU Chengyuan, KANG Yili, YOU Lijun, et al. Lost-circulation control for formation-damage prevention in naturally fractured reservoir:Mathematical model and experimental study[C]. SPE 182266-PA, 2017. doi:10.2118/182266-PA [38] MULLIN T. Mixing and de-mixing[J]. Science, 2002, 295(5561):1851. doi:10.1126/science.1070258 [39] DE GENNES P G. Granular matter:A tentative view[J]. Reviews of Modern Physics, 1999, 71(2):537. doi:10.1103/RevModPhys.71.S374 |