[1] 喻高明. 非均质油藏注水开发指标计算方法的改进[J]. 石油勘探与开发,1997,24(2):80-83. YU Gaoming. A correction to the budgetary estimating method used in the development design for waterflooding reservoir[J]. Petroleum Exploration and Development, 1997, 24(2):80-83. [2] 宋兆杰,李治平,赖枫鹏,等. 高含水期油田水驱特征曲线关系式的理论推导[J]. 石油勘探与开发,2013,40(2):201-208. doi:10.11698/PED.2013.02.09 SONG Zhaojie, LI Zhiping, LAI Fengpeng, et al. Derivation of water flooding characteristic curve for high water-cut oilfields[J]. Petroleum Exploration and Development, 2013, 40(2):201-208. doi:10.11698/PED.2013.02.09 [3] 吕爱民,王立伟,龙涛,等. 基于Buckley-Leverett理论的典型缝洞油藏一维驱替开发指标计算方法[J]. 西安石油大学学报(自然科学版),2018,33(1):61-67,74. doi:10.3969/j.issn.1673-064X.2018.01.010 LÜ Aimin, WANG Liwei, LONG Tao, et al. Calculation method for one dimensional displacement development indexes of typical fracture-vuggy reservoir models based on buckley-leverett theory[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2018, 33(1):61-67, 74. doi:10.3969/j.issn.1673-064X.2018.01.010 [4] 宋考平,吴玉树,计秉玉. 水驱油藏剩余油饱和度分布预测的φ函数法[J]. 石油学报,2006,27(3):91-95. doi:10.3321/j.issn:0253-2697.2006.03.020 SONG Kaoping, WU Yushu, JI Bingyu. A (φ)-function method for estimating distribution of residual oil saturation in water drive reservoir[J]. Acta Petrolei Sinica, 2006, 27(3):91-95. doi:10.3321/j.issn:0253-2697.2006.03.020 [5] 胡伟,杨胜来,翟羽佳,等. 油-水相对渗透率曲线优化校正新方法[J]. 石油学报,2015,36(7):871-875. doi:10.7623/syxb201507011 HU Wei, YANG Shenglai, ZHAI Yujia, et al. A new optimization and correction method of oil-water phase relative permeability curve[J]. Acta Petrolei Sinica, 2015, 36(7):871-875. doi:10.7623/syxb201507011 [6] 刘海龙. 一维水驱油恒压驱替渗流过程推导[J]. 大庆石油学院学报,2012,36(3):90-95. doi:10.3969/j.issn.2095-4107.2012.03.016 LIU Hailong. The derivation of one-dimensional displacement of oil by water in constant pressure[J]. Journal of Daqing Petroleum Institute, 2012, 36(3):90-95. doi:10.3969/j.issn.2095-4107.2012.03.016 [7] 刘海龙,由春梅,姜雪岩,等. 一维水驱油变压力驱替过程推导[J]. 石油地质与工程,2014,28(5):80-82,86. doi:10.3969/j.issn.1673-8217.2014.05.025 LIU Hailong, YOU Chunmei, JIANG Xueyan, et al. The derivation of one-dimensional water/oil displacement in variation pressure[J]. Petroleum Geology and Engineering, 2014, 28(5):80-82, 86. doi:10.3969/j.issn.1673-8217.2014.05.025 [8] 金蓉蓉. 新型含水率与采出程度关系理论曲线的推导[J]. 大庆石油地质与开发,2015,34(3):72-75. doi:10.3969/J.ISSN.1000-3754.2015.03.013 JIN Rongrong. Derivation of the new theoretical relationship curve between watercut and recovery factor[J]. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(3):72-75. doi:10.3969/J.ISSN.1000-3754.2015.03.013 [9] 杜晓康,李治平,田丰,等. 水驱油田高含水期体积波及系数预测方法[J]. 大庆石油地质与开发,2018,37(1):83-87. doi:10.19597/J.ISSN.1000-3754.201703011 DU Xiaokang, LI Zhiping, TIAN Feng, et al. Predicting method of the volumetric swept coefficient for high-watercut waterflooded oilfields[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(1):83-87. doi:10.19597/J.ISSN.1000-3754.201703011 [10] 邓森,王怒涛,孟令强,等. 高含水期两种新型水驱特征曲线的建立与应用[J]. 大庆石油地质与开发,2017,36(4):58-63. doi:10.19597/J.ISSN.1000-3754.201612012 DENG Sen, WANG Nutao, MENG Lingqiang, et al. Establishment and application of the new two-type water-flooding characteristic curves at high watercut stage[J]. Petroleum Geology and Oilfield Development in Daqing, 2017, 36(4):58-63. doi:10.19597/J.ISSN.1000-3754.201612012 [11] 张金庆. 水驱曲线的进一步理论探讨及童氏图版的改进[J]. 中国海上油气,2019,31(1):86-93. doi:10.11935/j.issn.1673-1506.2019.01.010 ZHANG Jinqing. A further theoretical discussion on water flooding curve and improvement of Tong's chart[J]. China Offshore Oil and Gas, 2019, 31(1):86-93. doi:10.11935/j.issn.1673-1506.2019.01.010 [12] 李跃刚,肖峰,徐文,等. 基于气水相对渗透率曲线的产水气井开采效果评价——以苏里格气田致密砂岩气藏为例[J]. 天然气工业,2015,35(12):27-34. doi:10.3787/j.issn.1000-0976.2015.12.004 LI Yuegang, XIAO Feng, XU Wen, et al. Performance evaluation on water-producing gas wells based on gas-water relative permeability curves:A case study of tight sandstone gas reservoirs in the Sulige Gas Field, Ordos Basin[J]. Natural Gas Industry, 2015, 35(12):27-34. doi:10.3787/j.issn.1000-0976.2015.12.004 [13] 苏海波. 反映动态启动压力梯度的低渗透油藏渗流模型[J]. 西南石油大学学报(自然科学版),2015,37(6):105-111. doi:10.11885/j.issn.1674-5086.2015.05.06.05 SU Haibo. A flow model reflecting dynamic kick-off pressure gradient for low permeability reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(6):105-111. doi:10.11885/j.issn.1674-5086.2015.05.06.05 [14] 薛颖,石立华,席天德. 童氏水驱曲线的改进及应用[J]. 西南石油大学学报(自然科学版),2015,37(1):141-145. doi:10.11885/j.issn.1674-5086.2012.12.20.02 XUE Ying, SHI Lihua, XI Tiande. Tong's water drive curve improvement and its application[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(1):141-145. doi:10.11885/j.issn.1674-5086.2012.12.20.02 [15] 高文君,徐冰涛,黄瑜,等. 水驱油田含水率预测方法研究及拓展[J]. 石油与天然气地质,2017,38(5):993-999. doi:10.11743/ogg20170518 GAO Wenjun, XU Bingtao, HUANG Yu, et al. Research on and development of prediction method of water cut in water flooding oilfield[J]. Oil & Gas Geology, 2017, 38(5):993-999. doi:10.11743/ogg20170518 [16] 陈元千,唐玮. 广义递减模型的建立及应用[J]. 石油学报,2016,37(11):1410-1413. doi:10.7623/syxb201611009 CHEN Yuanqian, TANG Wei. Establishment and application of generalized decline model[J]. Acta Petrolei Sinica, 2016, 37(11):1410-1413. doi:10.7623/syxb201611009 [17] 吴晓慧. 大庆长垣油田特高含水期水驱精细挖潜措施后产量变化规律[J]. 大庆石油地质与开发,2018,37(5):71-75. doi:10.19597/J.ISSN.1000-3754.201804038 WU Xiaohui. Changed laws of the production after waterflooding finely-tapped-potential stimulations for Daqing placanticline oilfields at the stage of extra-high watercut[J]. Petroleum Geology and Oilfield Development in Daqing,2018,37(5):71-75. doi:10.19597/J.ISSN.10003754.201804038 [18] 苑志旺,杨宝泉,杨莉,等. 深水浊积砂岩油田含水上升机理及优化注水技术——以西非尼日尔三角洲盆地AKPO油田为例[J]. 石油勘探与开发,2018,45(2):287-296. doi:10.11698/PED.2018.02.11 YUAN Zhiwang, YANG Baoquan, YANG Li, et al. Water-cut rising mechanism and optimized water injection technology for deepwater turbidite sandstone oilfield:A case study of AKPO Oilfield in Niger Delta Basin, West Africa[J]. Petroleum Exploration and Development, 2018, 45(2):287-296. doi:10.11698/PED.2018.02.11 [19] 张继成,何晓茹,周文胜,等. 大段合采油井层间干扰主控因素研究[J]. 西南石油大学学报(自然科学版),2015,37(4):101-106. doi:10.11885/j.issn.1674-5086.2015.03.12.02 ZHANG Jicheng, HE Xiaoru, ZHOU Wensheng, et al. Main controlling factors of interlayer interference in big intervals commingled production oil wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(4):101-106. doi:10.11885/j.issn.1674-5086.2015.03.12.02 [20] 周文胜,李倩茹,耿站立,等. 合采井层间干扰现象数学模拟研究[J]. 西南石油大学学报(自然科学版),2017,39(6):109-116. doi:10.11885/j.issn.1674-5086.2016.08.20.01 ZHOU Wensheng, LI Qianru, GENG Zhanli, et al. Mathematical simulation study on interlayer interference in commingled production[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(6):109-116. doi:10.11885/j.issn.1674-5086.2016.08.20.01 [21] 谢一婷,陈朝晖,柴小颖,等. 利用采油速度干扰系数评价油藏层间干扰[J]. 西南石油大学学报(自然科学版),2016,38(6):119-124. doi:10.11885/j.issn.16745086.2015.11.11.25 XIE Yiting, CHEN Zhaohui, CHAI Xiaoying, et al. Interlayer interference evaluation by the recovery rate interference factor for the waterflooding oil reservoir in the medium-late period[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(6):119-124. doi:10.11885/j.issn.16745086.2015.11.11.25 [22] 冯其红,王波,王相,等. 高含水油藏细分注水层段组合优选方法研究[J]. 西南石油大学学报(自然科学版),2016,38(2):103-108. doi:10.11885/j.issn.1674-5086.2013.12.17.04 FENG Qihong, WANG Bo, WANG Xiang, et al. Study on layer combination optimization method of subdivision water injection in high water-cut reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(2):103-108. doi:10.11885/j.issn.1674-5086.2013.12.17.04 [23] 黄世军,康博韬,程林松,等. 海上普通稠油油藏多层合采层间干扰定量表征与定向井产能预测[J]. 石油勘探与开发,2015,42(4):488-495. doi:10.11698/PED.2015.04.10 HUANG Shijun, KANG Botao, CHENG Linsong, et al. Quantitative characterization of interlayer interference and productivity prediction of directional wells in the multilayer commingled production of ordinary offshore heavy oil reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4):488-495. doi:10.11698/PED.2015.04.10 |