西南石油大学学报(自然科学版) ›› 2018, Vol. 40 ›› Issue (5): 154-162.DOI: 10.11885/j.issn.1674-5086.2017.08.30.11

• 石油与天然气工程 • 上一篇    下一篇

页岩纳米孔内超临界CO2、CH4传输行为实验研究

陈强, 孙雷, 潘毅, 高玉琼   

  1. “油气藏地质及开发工程”国家重点实验室·西南石油大学, 四川 成都 610500
  • 收稿日期:2017-08-30 出版日期:2018-10-01 发布日期:2018-10-01
  • 通讯作者: 孙雷,E-mail:sunleiswpi@163.com
  • 作者简介:陈强,1988年生,男,汉族,四川三台人,博士研究生,主要从事储层保护与水岩反应方面的研究工作。E-mail:swpu_chenqiang@foxmail.com;孙雷,1954年生,男,汉族,辽宁辽阳人,教授,主要从事油气藏流体相态理论与测试、气田及凝析气田开发理论与应用、注气提高采收率原理及应用等方面的研究工作。E-mail:sunleiswpi@163.com;潘毅,1981年生,男,汉族,四川仁寿人,博士,主要从事油气田开发方面的研究工作。E-mail:panyiswpu@126.com;高玉琼,1990年生,女,汉族,内蒙古集宁人,硕士,主要从事油气田注气提高采收率方面的研究工作。E-mail:helen0527@126.com
  • 基金资助:
    国家重点基础研究发展计划(2014CB239205)

Experimental Study on the Transmission Behaviors of Supercritical CO2 and CH4 in Shale Nanopores

CHEN Qiang, SUN Lei, PAN Yi, GAO Yuqiong   

  1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2017-08-30 Online:2018-10-01 Published:2018-10-01

摘要: 了解超临界CO2、CH4在页岩纳米孔内传输行为,是研究页岩储层超临界CO2注入能力、注入后时空分布以及提高页岩气藏采收率的基础。选用渗透率小于100 nD的龙马溪组富有机质页岩基块岩样,利用岩芯流动实验装置,通过监测岩芯入/出口端气体压力与混合气体(CO2、CH4)浓度变化,对比了页岩纳米孔内超临界CO2、CH4传输能力,分析了传输能力差异的原因。结果表明:页岩纳米孔内超临界CO2压力传递速率明显小于CH4,实验结束后岩样入口端二元混合气体组分中CH4百分含量显著降低,证实页岩纳米孔内超临界CO2传输能力显著低于CH4,主要原因是超临界CO2吸附能力更强、扩散-渗流能力更小以及超高密度特性表现出的非混相、活塞式驱替行为。基于以上认识,选择某些压裂段注入超临界CO2,而其他压裂段作为生产段,比单井"吞吐"方式(即注入-焖井-开井生产)更有利于驱替置换页岩纳米孔内游离态甲烷。

关键词: 超临界CO2, 甲烷, 传输, 纳米孔, 页岩气, 采收率

Abstract: Understanding the transmission behaviors of supercritical CO2 and CH4 in shale nanopores is fundamental for studying the supercritical CO2 injection capacity of shale reserves and the temporal and spatial distribution of injected supercritical CO2. Understanding these behaviors is also essential for improving the recovery rate of shale reserves. In the study, the transmission capacities of supercritical CO2 and CH4 in shale nanopores were compared and the difference in their transmission capacities was analyzed for the underlying reason. A core flow experiment was performed on organic-matter-rich shale matrix samples of the Longmaxi Formation (permeability smaller than 100 nD) by varying the pressure as well as the CO2 and CH4 concentrations in the CO2/CH4 mixture at the inlet and outlet of the core. The experimental results show that the pressure transmission rate of supercritical CO2 in shale nanopores was clearly lower than that of CH4. At the end of the experiment, the CH4 content by percentage in the CO2/CH4 mixture significantly decreased at the inlet of the rock sample, demonstrating that the transmission capacity of supercritical CO2 in shale nanopores is significantly lower than that of CH4. This can be explained by certain properties of supercritical CO2, such as its higher absorption capacity and lower diffusibility and permeability as well as its immiscible displacement and piston-like displacement behaviors owing to its super-high density characteristics. Based on this understanding, some fractured sections were selected for supercritical CO2 injection, and other fractured sections were reserved for production. Compared with the single-well injection-soaking-production design, this configuration facilitates better displacement of free-state methane in shale nanopores.

Key words: supercritical CO2, methane, transport, nanopores, shale gas, recovery rate

中图分类号: