[1] GUPTA S, NIKOLAOU M, SAPUTELLI L, et al. ESP health monitoring KPI:A real-time predictive analytics application[C]. SPE 181009-MS, 2016. doi:10.2118/181009-MS [2] GUPTA S, SAPUTELLI L, NIKOLAOU M. Big data analytics workflow to safeguard ESP operations in realtime[C]. SPE 181224-MS, 2016. doi:10.2118/181224-MS [3] STONE P. Introducing predictive analytics:Opportunities[C]. SPE 106865-MS, 2007. doi:10.2118/106865-MS [4] 乔雨. 潜油电泵井上数字式电流卡片的运用[J]. 化学工程与装备, 2017(1):114-115. doi:10.19566/j.cnki. cn35-1285/tq.2017.01.041 QIAO Yu. Application of digital current card on submersible electric pump well[J]. Chemical Engineering and Equipment, 2017(1):114-115. doi:10.19566/j.cnki.cn35-1285/tq.2017.01.041 [5] CHO J H, LEE J M, CHOI S W, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60:279-288. doi:10.1016/j.ces.2004.08.007 [6] GUPTA S, SAPUTELLI L, NIKOLAOU M. Applying big data analytics to detect, diagnose, and prevent impending failures in electric submersible pumps[C]. SPE 181510-MS, 2016. doi:10.2118/181510-MS [7] LI Weihua, YUE H H, VALLE-CERVANTES S, et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control, 2000, 10(5):471-486. doi:10.1016/S0959-1524(00)00022-6 [8] 李玉,俞志明,宋秀贤. 运用主成分分析(PCA)评价海洋沉积物中重金属污染来源[J]. 环境科学, 2006, 27(1):137-141. doi:10.13227/j.hjkx.2006.01.026 LI Yu, YU Zhiming, SONG Xiuxian. Application of principal component analysis (PCA) for the estimation of source of heavy metal contamination in marine sediments[J]. Environmental Science, 2006, 27(1):137-141. doi:10.13227/j.hjkx.2006.01.026 [9] 李荣雨. 基于PCA的统计过程监控研究[D]. 杭州:浙江大学, 2007. LI Rongyu. Research on statistical process monitoring based on PCA[D]. Hangzhou:Zhejiang University, 2007. [10] 吉敏. 基于PCA-SVM的轴承故障诊断研究[J]. 电子设计工程,2019,27(17):14-18. doi:10.3969/j.issn.1674-6236.2019.17.004 JI Min. Research on bearing fault diagnosis based on PCASVM[J]. Electronic Design Engineering, 2019, 27(17):14-18. doi:10.3969/j.issn.1674-6236.2019.17.004 [11] 高绪伟. 核PCA特征提取方法及其应用研究[D]. 南京:南京航空航天大学, 2009. doi:10.7666/d.d077304 GAO Xuwei. Research on nuclear PCA feature extraction method and its application[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009. doi:10.7666/d.d077304 [12] HOFFMANN A, STANKO M E. Real-time production optimization of a production network with ESP-boosted wells:A case study[C]. SPE 184189-MS, 2016. doi:10.2118/184189-MS [13] ABDELAZIZ M, LASTRA R, XIAO J J. ESP data analytics:Predicting failures for improved production performance[C]. SPE 188513-MS, 2017. doi:10.2118/188513-MS [14] 吕宁. 基于数据驱动的故障诊断模型及算法研究[D]. 哈尔滨:哈尔滨理工大学, 2009. doi:10.7666/d.y1839021 LÜ Ning. Research on fault diagnosis model and algorithm based on data-driven[D]. Harbin:Harbin University of Science and Technology, 2009. doi:10.7666/d.y1839021 [15] 何宁. 基于ICA-PCA方法的流程工业过程监控与故障诊断研究[D]. 杭州:浙江大学, 2004. HE Ning. Research on process industry process monitoring and fault diagnosis based on ICA-PCA method[D]. Hangzhou:Zhejiang University, 2004. [16] JANSEN R N. Usage of artificial intelligence to reduceoperational disruptions of ESPs by implementing predictive maintenance[C]. SPE 192610-MS, 2018. doi:10.2118/192610-MS [17] SHUWAIKHAT H A, RAMOS M, AIFAN A R, et al. Innovative approach to prolong ESP run life using algorithmic models[C]. SPE 188807-MS, 2017. doi:10.2118/188807-MS [18] DENG Lichi, DAVANI E, DARABI H, et al. Rapid and comprehensive artificial lift systems performance analysis through data analytics, diagnostics and solution evaluation[C]. SPE 192460-MS, 2018. doi:10.2118/192460-MS [19] 鄂东辰. 基于多模型PCA的翻车机液压系统故障诊断研究[D]. 秦皇岛:燕山大学, 2018. E Dongchen. Research on fault diagnosis for car dumper hydraulic system based on multiple models PCA[D]. Qinhuangdao:Yanshan University, 2018. [20] MISRA M, YUE H H, QIN S J, et al. Multivariate process monitoring and fault diagnosis by multi-scale PCA[J]. Computers & Chemical Engineering, 2002, 26(9):1281-1293. doi:10.1016/S0098-1354(02)00093-5 [21] ALAMU O A, PANDYA D A, WARNER O, et al. ESP data analytics:use of deep autoencoders for intelligent surveillance of electric submersible pumps[C]. OTC 30468-MS, 2020. doi:10.4043/30468-MS |