西南石油大学学报(自然科学版) ›› 2021, Vol. 43 ›› Issue (2): 138-148.DOI: 10.11885/j.issn.1674-5086.2020.03.05.02
姜俊泽1, 雍歧卫1, 钱海兵1, 蒋新生1, 黄妍琪2
收稿日期:
2020-03-05
出版日期:
2021-04-10
发布日期:
2021-04-23
通讯作者:
雍歧卫,E-mail:yqw570957@163.com
作者简介:
姜俊泽,1984年生,男,汉族,吉林梅河口人,讲师,博士,主要从事油气管道输送技术与装备研究。E-mail:Dr_Jiang1984@163.com基金资助:
JIANG Junze1, YONG Qiwei1, QIAN Haibing1, JIANG Xinsheng1, HUANG Yanqi2
Received:
2020-03-05
Online:
2021-04-10
Published:
2021-04-23
摘要: 准确识别相界面结构形态是相界面力学分析的基础,也是研究气液两相流动规律的一种重要技术手段。针对动力、能源、化工、医药及航空等领域气液两相管流的相界面拓扑性强、变化速度快、实现准确测量难度大等特点,开展了气液两相管流相界面检测技术和数值模拟方法的综述研究。相界面检测技术主要有电容法、电导法、光导法、射线法、热学法、声学法、核磁共振法以及近年来发展起来的金属丝网传感器检测技术、过程层析成像技术和高速粒子成像技术;数值模拟方法有PIC法、MAC法、ALE法、VOF法和Level-Set法等。通过对比分析各种方法的优势和局限性,提出了气液相界面的追踪检测技术的研究策略和发展趋势,可为气液两相流的研究提供有益参考。
中图分类号:
姜俊泽, 雍歧卫, 钱海兵, 蒋新生, 黄妍琪. 气液两相管流相界面检测及数值模拟研究进展[J]. 西南石油大学学报(自然科学版), 2021, 43(2): 138-148.
JIANG Junze, YONG Qiwei, QIAN Haibing, JIANG Xinsheng, HUANG Yanqi. Advances in the Interface Detection of Gas-liquid Two-phase Pipe-flow Research[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(2): 138-148.
[1] 姜俊泽,张伟明,雍歧卫,等. 机动管线气顶排空过程持液率特性的实验研究[J]. 实验流体力学,2016,30(4):48-54. doi:10.11729/syltlx20150152 JIANG Junze, ZHANG Weiming, YONG Qiwei, et al. Experimental study on characteristics of the liquid holdup during mobile pipe draining[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4):48-54. doi:10.11729/syltlx20150152 [2] GUO Liejin, GU Hanyang, ZHANG Chenming. A single capacitance probe measurement system for interface and holdup measurement system of multiphase pipe:200610042792.4[P]. 2006-5-11. [3] JOHNSON I D. Method and apparatus for measuring water in crude oil:US4644263-A[P]. 1987. [4] VELASCO P H F, RODRIGUEZ O M H. Applications of wire-mesh sensors in multiphase flows[J]. Flow Measurement and Instrumentation, 2015, 45:255-273. doi:10.1016/j.flowmeasinst.2015.06.024 [5] PRASSER H M, BÖTTGER A, ZSCHAU J. A new electrode-mesh tomography for gas-liquid flows[J]. Flow Measurement and Instrumentation, 1998, 9(2):111-119. doi:10.1016/S0955-5986(98)00015-6 [6] SILVA D M J, SCHLEICHER E, HAMPEL U. Capacitance wire-mesh sensor for fast measurement of phase fraction distributions[J]. Measurement Science and Technology, 2007, 18(7):2245-2251. doi:10.1088/0957-0233/18/7/059 [7] SCHUBERT M, KRYK H, HAMPEL U. Slow-mode gas/liquid-induced periodic hydrodynamics in trickling packed beds derived from direct measurement of cross-sectional distributed local capacitances[J]. Chemical Engineering and Processing:Process Intensification, 2010, 49(10):1107-1121. doi:10.1016/j.cep.2010.08.004 [8] KIPPING R, BRITO R, SCHEICHER E, et al. Developments for the application of the or in industries[J]. International Journal of Multiphase Flow, 2016, 85(6):86-95. doi:10.1016/j.ijmultiphaseflow.2016.05.017 [9] HAMPEL U, OTAHAL J, BODEN S, et al. Miniature conductivity wire-mesh sensor for gas-liquid two-phase flow measurement[J]. Flow Measurement and Instrumentation, 2009, 20(1):15-21. doi:10.1016/j.flowmeasinst.2008.09.001 [10] DA SILVA M J, THIELE S, ABDULKAREEM L, et al. High-resolution gas-oil two-phase flow visualiza tion with a capacitance wire-mesh sensor[J]. Flow Measurement and Instrumentation, 2010, 21(3):191-197. doi:10.1016/j.flowmeasinst.2009.12.003 [11] TOMPKINSA C, PRASSERB H M, CORRADINIA M. Wire-mesh sensors:A review of methods and uncertainty in multiphase flows relative to other measurement techniques[J]. Nuclear Engineering and Design, 2018, 337(6):205-220. doi:10.1016/j.nucengdes.2018.06.005 [12] AZZOPARDI B, ABDULKAREEM L A, ZHAO Dunhua, et al. Comparison between electrical capacitance tomography and wire mesh sensor output for air/silicone oil flow in a vertical pipe[J]. Industrial and Engineering Chemistry Research, 2010, 49(18):8805-8811. doi:10.1021/ie901949z [13] PIETRUSKE H, PRASSER H M. Wire-mesh sensors for high-resolvingtwo-phase flow studies at high pressures and temperatures[J]. Flow Measurement and Instrumentation, 2007, 18(2):87-94. doi:10.1016/j.flowmeasinst.2007.01.004 [14] TELKKÄ J, YLÖNEN A, HYVÄRINEN J, et al. Estimation of velocity fields from the axial wire-mesh sensor data[J]. Nuclear Engineering and Design, 2018, 336(9):34-44. doi:10.1016/j.nucengdes.2017.05.010 [15] SCHLEICHER E, AYDIN T, VIEIRA R E, et al. Refined reconstruction of liquid-gas interface structures for stratified two-phase flow using wire-mesh sensor[J]. Flow Measurement and Instrumentation, 2014, 46:230-239. doi:10.1016/j.flowmeasinst.2015.06.002 [16] CLIFFORD C E, MACDONALD N E, PRASSER H M, et al. Robust computational framework for wire-mesh sensor potential field calculations[J]. Flow Measurement and Instrumentation, 2019, 67(4):107-117. doi:10.1016/j.flowmeasinst.2019.04.009 [17] MARCO J S, UWE H. Capacitance wire-mesh sensor applied for the visualization of three-phase gas-liquid-liquid flows[J]. Flow Measurement and Instrumentation, 2013, 34(12):113-117. doi:10.1016/j.flowmeasinst.2013.09.004 [18] 王海琴,何利民,罗小明. 水平管段塞流持液率波动规律研究[J]. 工程热理学报,2007,28(5):795-798. doi:10.3321/j.issn:0253-231X.2007.05.022 WANG Haiqin, HE Limin, LUO Xiaoming. Fluctuation characteristics of slug liquid holdup for slug flow in horizontal pipe[J]. Journal of Engineering Thermophysics, 2007, 28(5):795-798. doi:10.3321/j.issn:0253-231X.2007.05.022 [19] 罗小明,何利民,吕宇玲. 水平管段塞流持液率的波动特性[J]. 高校化学工程学报,2009,23(4):719-723. doi:10.3321/j.issn:1003-9015.2009.04.031 LUO Xiaoming, HE Limin, LÜ Yuling. Fluctuation characters of liquid holdup for slug flow in horizontal pipeline[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(4):719-723. doi:10.3321/j.issn:1003-9015.2009.04.031 [20] 顾汉洋. 气液两相流界面起塞机理和段塞流相界面结构特征研究[D]. 西安:西安交通大学,2006. [21] HEWITT G F. Measurement of two-phase flow parameters[M]. London:Academic Press, 1978. [22] BARNEA D, SHOHAM O, TAITEL Y. Flow pattern characterization in two phase flow by electrical conductance probe[J]. International Journal of Multiphase Flow, 1980, 6(5):387-397. doi:10.1016/0301-9322(80)90001-4 [23] PAGLIANTI A, PINTUS S, GIONA M. Time-series analysis approach for the identification of flooding/loading transition in gas-liquid stirred tank reactors[J]. Chemical Engineering Science, 2000, 55(23):5793-5802. doi:10.1016/S0009-2509(00)00125-1 [24] 郑荣钏,杨瑞昌,沈幼庭,等. 三探头单纤光导探针测量二维气泡速度[J]. 清华大学学报(自然科学版),1996,36(10):1-6. ZHENG Rongchuan, YANG Ruichang, SHEN Youting, et al. Two-dimensional bubble velocity measurements with tri-fiber-optical-probe[J]. Journal of Tsinghua University (Sci & Tech), 1996, 36(10):1-6. [25] 杨瑞昌,郑荣钏,朱繁林,等. 三探头单纤光导探针测量二维气泡速度的实验研究[J]. 工程热物理学报,1998,19(2):237-240. YANG Ruichang, ZHENG Rongchuan, ZHU Fanlin, et al. Measuement of two-dimensional bubble velocity with tri-single-fiber-optical-probe[J]. Journal of Engineering Thermophysics, 1998, 19(2):237-240. [26] TIAN Daogui, YAN Changqi, SUN Licheng. Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe[J]. Progress in Nuclear Energy, 2015, 78(1):110-120. doi:10.1016/j.pnucene.2014.08.005 [27] HU Bin, LANGSHOLT M, LIU Lan, et al. Flow structure and phase distribution in stratified and slug flows measured by X-ray tomography[J]. International Journal of Multiphase Flow, 2014, 67(S):162-179. doi:10.1016/j.ijmultiphaseflow.2014.06.011 [28] MURAI Y, TASAKA Y, NAMBUA Y, et al. Ultrasonic detection of moving interfaces in gas-liquid two-phase flow[J]. Flow Measurement and Instrumentation, 2010, 21(3):356-366. doi:10.1016/j.flowmeasinst.2010.03.007 [29] ROBERTO G A S, MURAI Y, TAKEDA Y. Chapter 1:Ultrasound-based gas-liquid interface detection in gas-liquid two-phase flows[J]. Advances in Chemical Engineering, 2009, 37:1-27. doi:10.1016/S0065-2377(09)03701-6 [30] XU Yuqiang, GUAN Zhichuan, JIN Yan, et al. Study of the ultrasonic propagation law in the gas-liquid two-phase flow of deepwater riser through numerical simulation[J]. Journal of Petroleum Science and Engineering, 2017, 159(11):419-432. doi:10.1016/j.petrol.2017.09.051 [31] LIU L, FANG Z, WU Y P, et al. Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using electrical resistance tomography[J]. Construction and Building Materials, 2018, 175(6):267-276. doi:10.1016/j.conbuildmat.2018.04.139 [32] 许燕斌,王化祥,崔自强. 水平管气水两相流分相界面识别[J]. 天津大学学报,2010,43(8):743-748. doi:10.3969/j.issn.0493-2137.2010.08.014 XU Yanbin, WANG Huaxiang, CUI Ziqiang. Phase interface identification of gas/water two-phase flow in horizontal pipe[J]. Journal of Tianjin University, 2010, 43(8):743-748. doi:10.3969/j.issn.0493-2137.2010.08.014 [33] 刘琪芳. 气液两相流流量测量的ERT成像技术研究[D]. 太原:中北大学,2008. LIU Qifang. Study on electrical resistance tomography of flowrate measurement for gas-liquid two-phase flow[D]. Taiyuan:North University of China, 2008. [34] JIANG Lanlan, SONG Yongchen, LIU Yu, et al. Measurement of two phase flow in Porous medium using high-resolution magnetic resonance imaging[J]. Chinese Journal Chemical Engineering, 2013, 21(1):85-93. doi:10.1016/S1004-9541(13)60445-0 [35] 董峰,徐立军,刘小平,等. 用电阻层析成像技术实现两相流流型识别[J]. 仪器仪表学报,2001,22(3):416-431. doi:10.3321/j.issn:0254-3087.2001.z2.205 DONG Feng, XU Lijun, LIU Xiaoping, et al. Identification of two-phase flow regimes using electrical resistance tomography[J]. Chinese Journal of Scientific Instrument, 2001, 22(3):416-431. doi:10.3321/j.issn:0254-3087.2001.z2.205 [36] SHI Baocheng, WEI Jinjia, ZHANG Yan. A novel experimental facility for measuring internal flow of Solid-liquid two-phase flow in a centrifugal pump by PIV[J]. International Journal of Multiphase Flow, 2017, 89(3):266-276. doi:10.1016/j.ijmultiphaseflow.2016.11.002 [37] HARLOW F H. PIC and its progeny[J]. Computer Physics Communications, 1988, 48(1):1-10. doi:10.1016/0010-4655(88)90017-3 [38] SAMUEL J A, RICHARD E W. Cell-centered particle weighting algorithm for PIC simula tions in a non-uniform 2D axisymmetric mesh[J]. Journal of Computational Physics, 2014, 272(4):218-226. doi:10.1016/j.jcp.2014.04.037 [39] BRACKBILL J U. On energy and momentum conservation in particle-in-cell plasma simulation[J]. Journal of Computational Physics, 2016, 317(7):405-427. doi:10.1016/j.jcp. 2016.04.050 [40] DALY B J. Numerical study of two-fluid rayleigh-taylor instability[J]. The Physics of Fluids, 1967, 10(2):297-307. doi:10.1063/1.1762109 [41] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225. doi:10.1016/0021-9991(81)90145-5 [42] DALY B J, PRACHT W E. Numerical study of density current surges[J]. The Physics of Fluids, 1968, 11(1):15-30. doi:10.1063/1.1691748 [43] HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3):227-253. doi:10.1016/0021-9991(74)90051-5 [44] BELYTSCHKO T. Methods and programs for analysis of fluid-structure systems[J]. Nuclear Engineering and Design, 1977, 42(1):41-52. doi:10.1016/0029-5493(77)90060-7 [45] NI D, HONG F J, CHENG P, et al. Numerical study of liquid-gas and liquid-liquid taylor flows using a two phase flow model based on Arbitrary-Lagrangian-Eulerian (ALE) formulation[J]. International Communications in Heat and Mass Transfer, 2017, 88(11):37-47. doi:10.1016/jicheatmasstransfer.2017.08.006 [46] ANDREW J B, MAIRE P H, RIDER W J, et al. Arbitrary lagrangian-eulerian methods for modeling high-speed compressible multimaterial flows[J]. Journal of Computational Physics, 2016, 322(1):603-665. doi:10.1016/j.jcp.2016.07.001 [47] ESCALONA J L. An arbitrary Lagrangian-Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics[J]. Mechanism and Machine Theory, 2017, 112(6):1-21. doi:10.1016/j.mechmachtheory.2017.01.014 [48] WURIGEN B, SHASHKOV M. Adaptive reconnection-based arbitrary lagrangian eulerian method[J]. Journal of Computational Physics, 2015, 299(10):902-939. doi:10.1016/j.jcp.2015.07.032 [49] WALTZ J, MORGAN N R, CANFIELD T R, et al. A three-dimensional finite element arbitrary Lagrangian-Eulerian method for shock hydrodynamics on unstructured grids[J]. Computers & Fluids, 2014, 92(3):172-187. doi:10.1016/j.compfluid.2013.12.021 [50] 王小庆,金先龙,杨志豪. 基于ALE的大型输水隧道地震动响应并行数值分析[J]. 工程力学,2017,34(3):247-256. doi:10.6052/j.issn.1000-4750.2015.08.0661 WANG Xiaoqing, JIN Xianlong, YANG Zhihao. Parallel numerical simulation for dynamic response of large-scale water conveyance tunnel under seismic excitation based on ALE method[J]. Engineering Mechanics, 2017, 34(3):247-256. doi:10.6052/j.issn.1000-4750.2015.08.0661 [51] 李明健,倪明玖,张年梅. 一种任意欧拉一拉格朗日描述的流固祸合算法及其应用[C]//南京:第九届全国流体力学学术会议,2016. [52] HARLOW F H, WELCH J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. The Physics of Fluids, 1967, 8:2182-2189. doi:10.1063/1.1761178 [53] SHYY W, UDAYKUMAR H S, RAO M M. Computational fluid dynamics with moving boundaries[J]. AIAA Journal, 1998, 36(2):285-303. doi:10.2514/2.7524 [54] MCKEE S, TOME M F, FERREIR V G, et al. The MAC method[J]. Computers & Fluids, 2008, 37(8):907-930. doi:10.1016/j.compfluid.2007.10.006 [55] AMSDEN A A, HARLOW F H. A simplified mac technique for incompressible fluid calculation[J]. Journal of Computational Physics, 1970, 6(2):322-325. doi:10.1016/0021-9991(70)90029-X [56] 刘佩尧,朱宝杰,张莹,等. 基于FTM的Kelvin-Helmholtz不稳定性衍化数值分析[J]. 应用力学学报,2017,34(6):1061-1066. doi:10.11776/cjam.34.06.A041 LIU Peiyao, ZHU Baojie, ZHANG Ying, et al. Numerical simulation of Kelvin-Helmholtz instability using front tracking method[J]. Chinese Journal of Applied Mechanics, 2017, 34(6):1061-1066. doi:10.11776/cjam.34.06.A041 [57] NGUYEN V T, PARK W G. A volume-of-fluid (VOF) interface-sharpening method for two-phase incompressible flows[J]. Computers & Fluids, 2017, 152(7):104-119. doi:10.1016/j.compfluid.2017.04.018 [58] 宋彦坡,刘志高,陶焰明,等. 基于数值模拟的气液相界面积计算方法[J]. 工程科学学报,2016,38(8):1091-1097. doi:10.13374/j.issn2095-9389.2016.08.007 SONG Yanbo, LIU Zhigao, TAO Yanming, et al. Computation method of gas-liquid interfacial area based on numerical simulation results[J]. Chinese Journal of Engineering, 2016, 38(8):1091-1097. doi:10.13374/j.issn2095-9389.2016.08.007 [59] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2):112-152. doi:10.1006/jcph.1998.5906 [60] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-acobi formulations[J]. Journal of Computational Physics, 1988, 79(1):12-49. doi:10. 1016/0021-9991(88)90002-2 [61] SUSSMAN M, FATEMI E, SMEREKA P, et al. An improved level set method for incompressible two-phase flows[J]. Computers & Fluids, 1998, 27(5-6):663-680. doi:10. 1016/S0045-7930(97)00053-4 [62] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1):146-159. doi:10.1006/jcph. 1994.1155 [63] SUN D L, TAO W Q. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(4):645-655. doi:10.1016/j. ijheatmasstransfer.2009.10.030 [64] LING Kong, ZHANG Shuai, WU Pengzhan, et al. A coupled volume-of-fluid and level-set method (VOSET) for capturing interface of two-phase flows in arbitrary polygon grid[J]. International Journal of Heat and Mass Transfer, 2019, 143(11):118565. doi:10.1016/j.ijheatmasstransfer.2019.118565 [65] HARDY J, PAZZIS O D, POMEAU Y. Molecular dynamics of a classical lattice gas:Transport properties and time correlation functions[J]. Physical Review A, 1976, 13(5):1949. doi:10.1103/PhysRevA.13.1949 [66] FRISCH U, POMEAU B H Y. Lattice-gas automata for the Navier-Stokes equation[J]. Physical Review Letters, 1986, 56(14):1505-1508. doi:10.1103/PhysRevLett.56.1505 [67] 胡安杰. 多相流动格子Boltzmann方法研究[D]. 重庆:重庆大学,2015. HU Anjie. Studies on Lattice Boltzmann method for multi-phase flow[D]. Chongqing:Chongqing University, 2015. [68] NEMATI M, SHATERI A N, TOGHRAIE D, et al. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid-vapor for multi-phase flows[J]. Physica A:Statistical Mechanica and its Applications, 2017, 489(8):65-77. doi:10.1016/j.physa.2017.07.013 [69] HUANG Jizu, WANG Xiaoping. A lattice Boltzmann model for multiphase flows with moving contact line and variable density[J]. Journal of Computational Physics, 2018, 353(1):26-45. doi:10.1016/j.jcp.2017.10.002 [70] LI Dong, HE Yaling. Three-dimensional lattice Boltzmann models for solid-liquid phase change[J]. International Journal of Heat and Mass Transfer, 2017, 115(12):1334-1347. doi:10.1016/j.ijheatmasstransfer.2017.07.048 [71] VILLELA M F S, VILLAR M M, SERFATY R, et al. Mathematical modeling and numerical simulation of two-phase flows using Fourier pseudo-spectral and front-tracking methods:The proposition of a new method[J]. Applied Mathematical Modeling, 2017, 52(8):241-254. doi:10.1016/j.apm.2017.06.041 [72] UZI A, OSTROVSKI Y, LEVY A. Modeling and simulation of particles in gas-liquid interface[J]. Advanced Powder Technology, 2016, 27(1):112-123. doi:10.1016/j.apt.2015. 11.007 [73] LIU D M, HE Q L, GEOFFREY E. Capture of impacting particles on a confined gas-liquid interface[J]. Minerals Engineering, 2014, 55(1):138-146. doi:10.1016/j.mineng.2013.10.001 [74] SINN N, ALISHAHI M, HARDT S. Detachment of particles and particle clusters from liquid/liquid interfaces[J]. Journal of Colloid and Interface Science, 2015, 458(11):62-68. doi:10.1016/j.jcis.2015.06.050 [75] CHARIN A H L M, TUKOVIĆ, JASAK H, et al. A moving mesh interface tracking method for simulation of liquid-liquid systems[J]. Journal of Computational Physics, 2017, 334(1):419-441. doi:10.1016/j.jcp.2017.01.011 |
[1] | 肖晓华, 代继樑, 朱海燕, 赵建国. 钻井机器人偏心流道冲蚀实验及数值模拟研究[J]. 西南石油大学学报(自然科学版), 2021, 43(2): 167-177. |
[2] | 魏兵, 刘江, 张翔, 蒲万芬. 致密油藏提高采收率方法与理论研究进展[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 91-102. |
[3] | 张博宁, 张芮菡, 吴婷婷, 鲁友常. 致密气藏多级压裂水平井生产动态机理分析[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 107-117. |
[4] | 杨丽娟, 张明迪, 王本成, 温善志, 刘远洋. 基于数值模拟的生物礁气藏地层水分布研究[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 118-126. |
[5] | 王开宇, 王超, 范家伟, 徐彦龙, 冉丽君. 海相巨厚砂岩油藏夹层精细地质建模方法研究[J]. 西南石油大学学报(自然科学版), 2020, 42(3): 69-79. |
[6] | 史殊哲, 韩国庆, 吴晓东, 钟子尧, 陆宽. 旋流条件下的气液环空流流动规律研究[J]. 西南石油大学学报(自然科学版), 2020, 42(3): 170-178. |
[7] | 魏兵, 宋涛, 赵金洲, 卡杰特·瓦列里, 蒲万芬. 溶解气回注提高致密油藏采收率效果及敏感性[J]. 西南石油大学学报(自然科学版), 2019, 41(5): 85-95. |
[8] | 张杰, 陈小华, 鲁鑫, 彭昀飞. 逆断层作用下埋地管道局部屈曲行为研究[J]. 西南石油大学学报(自然科学版), 2019, 41(3): 169-176. |
[9] | 徐珂, 戴俊生, 冯建伟, 任启强. 磨溪-高石梯区块断层对裂缝分布的控制作用[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 10-22. |
[10] | 王志华, 李杰训, 周楠, 柏晔, 许云飞. 含聚污水深度过滤过程模拟及技术界限优化[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 175-186. |
[11] | 夏志增, 王学武, 王厉强, 白雅洁. 热水吞吐开采水合物藏数值模拟研究[J]. 西南石油大学学报(自然科学版), 2018, 40(6): 124-130. |
[12] | 龚迪光, 陈军斌, 曲占庆, 郭天魁. 径向井排引导水力压裂裂缝扩展机理研究[J]. 西南石油大学学报(自然科学版), 2018, 40(5): 122-130. |
[13] | 刘勇, 彭小龙, 杜志敏. 裂缝性油藏非结构四边形网格数值模拟研究[J]. 西南石油大学学报(自然科学版), 2018, 40(4): 105-115. |
[14] | 吕心瑞, 韩东, 李红凯. 缝洞型油藏储集体分类建模方法研究[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 68-77. |
[15] | 曹鹏, 戴传瑞, 马慧, 闫晓芳, 常少英. 白云岩油藏低渗透条带对剩余油分布的影响[J]. 西南石油大学学报(自然科学版), 2017, 39(5): 143-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||