[1] JIANG J, MA A, WENG W, et al. Corrosion fatigue performance of pre-split steel wires for high strength bridge cables[J]. Fatigue & Fracture of Engineering Materials & Strctures, 2009, 32:769-779. doi:10.1111/j.1460-2695.2009.01384.x [2] RAJASANKA J, IYER NAGESH R. A probability-based model for growth of corrosion pits in aluminum alloys[J]. Engineering Fracture Mechanics, 2006, 73:553-570. doi:10.1016/j.engfracmech.2005.10.001 [3] JONES K, HOEPPNER DW. Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading[J]. Corrosion Science, 2005, 47:2185-2198. doi:10.1016/j.corsci.2004.10.004 [4] NAKAMURA S, SUZUMURA K. Experimental study on fatigue strength of corroded bridge wires[J]. Journal of Bridge Engineering, 2013, 18(3):200-209. doi:10.1061/(ASCE)BE.1943-5592.0000366 [5] LI Shunlong, XU Yang, ZHU Songye, et al. Probabilistic deterioration model of high-strength steel wires and its application to bridge cables[J]. Structure and Infrastructure Engineering, 2014, 11(9):1240-1249. doi:10.1080/15732479.2014.948462 [6] 黄小光. 腐蚀疲劳点蚀演化与裂纹扩展机理研究[D]. 上海:上海交通大学, 2016. HUANG Xiaoguang. Study on pitting evolution and crack propagation mechanism of corrosion fatigue[D]. Shanghai:Shanghai Jiao Tong University, 2016. [7] 秦广冲, 徐善华, 何羽玲, 等. 初、次级蚀坑三维变化对钢板应力集中系数的影响[J]. 材料科学与工程学报, 2015(4):251-256. doi:10.14136/j.cnki.issn1673-2812.2015.02.021 QIN Guangchong, XU Shanhua, HE Yuling, et al. Influence of three-dimensional changes of primary and secondary pits on stress concentration coefficient of steel plate[J]. Journal of Materials Science and Engineering, 2015(4):251-256. doi:10.14136/j.cnki.issn1673-2812.2015.02.021 [8] 兰成明, 任登路, 徐阳, 等. 平行钢丝斜拉索疲劳性能评定II:斜拉索疲劳寿命模型[J]. 土木工程学报, 2017, 50(7):69-77. doi:10.15951/j.tmgcxb.2017.07.008 LAN Chengming, REN Denglu, XU Yang. Fatigue performance evaluation of parallel steel wire stay cables II:Fatigue life model of stay cables[J]. Journal of Civil Engineering, 2017, 50(7):69-77. doi:10.15951/j.tmgcxb.2017.07.008 [9] 叶华文, 黄云, 王义强, 等. 基于临界域法的桥梁钢丝腐蚀疲劳寿命[J]. 西南交通大学学报, 2015, 50(2):294-299. doi:10.3969/j.issn.0258-2724.2015.02.013 YE Huawen, HUANG Yun, WANG Yiqiang, et al. Corrosion fatigue life of bridge steel wire based on critical region method[J]. Journal of Southwest Jiaotong University, 2015, 50(2):294-299. doi:10.3969/j.issn.0258-2724.2015.02.013 [10] 孙传智. 索承式桥梁腐蚀吊索安全性能与疲劳寿命评估[D]. 南京:东南大学, 2013. SUN Chuanzhi. Safety performance and fatigue life evaluation of corrosion sling for cable-supported bridge[D]. Nanjing:Southeast University, 2013. [11] 姚国文, 刘超越, 吴国强. 酸雨环境-荷载耦合作用下拉索腐蚀损伤机理研究[J]. 重庆交通大学学报(自然科学版), 2016, 35(6):6-10. doi:10.3969/j.issn.1674-0696.2016.06.02 YAO Guowen, LIU Chaoyue, WU Guoqiang. Study on corrosion damage mechanism of cable under coupling action of acid rain environment and load[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2016, 35(6):6-10. doi:10.3969/j.issn.1674-0696.2016.06.02 [12] ZHENG Xianglong, XIE Xu, LI Xiaozhang. Experimental study and residual performance evaluation of corroded high-tensile steel wires[J]. Journal of Bridge Engineering, 2017, 22(11):1-8. doi:10.1061/(ASCE)BE.1943-5592.0001114 [13] 王瑞雪. 平行钢丝吊索腐蚀疲劳抗力时变模型研究[J]. 佳木斯大学学报(自然科学版), 2017, 35(2):194-198. doi:10.3969/j.issn.1008-1402.2017.02.006 WANG Ruixue. Study on time-varying model of corrosion fatigue resistance of parallel steel wire sling[J]. Journal of Jiamusi University(Natural Science Edition), 2017, 35(2):194-198. doi:10.3969/j.issn.1008-1402.2017.02.006 [14] 冯小敏. 车辆荷载作用下骑跨式吊索腐蚀疲劳[D]. 郑州:郑州大学, 2016. FEN Xiaomin. Corrosion fatigue of straddle-type sling under vehicle load[D]. Zhengzhou:Zhengzhou University, 2016. [15] 乔燕, 缪长青, 孙传智. 索承式桥梁吊索钢丝腐蚀疲劳寿命评估[J]. 土木建筑与环境工程, 2017, 39(4):115-121. doi:10.11835/j.issn.1674-4764.2017.04.018 QIAO Yan, MIAO Changqing, SUN Chuanzhi. Evaluation of corrosion fatigue life for corroded wire for cablesupported bridge[J]. Journal of Civil, Architectural and Environmental Engineering, 2017, 39(4):115-121. doi:10.11835/j.issn.1674-4764.2017.04.018 [16] 周建鸿, 杨清梅. 斜拉索单根钢丝锈蚀机理及有限元分析[J]. 低温建筑技术, 2016, 38(5):69-72. doi:10.13905/j.cnki.dwjz.2016.05.025 ZHOU Jianhong, YANG Qingmei. Corrosion mechanism and finite element analysis of single steel wire of stay-cable[J]. Low Temperature Architecture Technology, 2016, 38(5):69-72. doi:10.13905/j.cnki.dwjz.2016.05.025 [17] 崔璐, 李臻, 王建才. 油井管的腐蚀疲劳研究进展[J]. 石油机械, 2015, 43(1):78-83. doi:10.3969/j.issn.1001-4578.2015.01.016 CUI Lu, LI Zhen, WANG Jiancai. Research progress on corrosion fatigue of oil well pipes[J]. China Petroleum Machinery, 2015, 43(1):78-83. doi:10.3969/j.issn.10014578.2015.01.016 [18] KONDO Y. Prediction of fatigue crack initiation life based on pit growth[J]. Corrosion, 1989, 45(1):7-11. doi:10.1016/0142-1123(89)90332-0 [19] CERIT M, GENEL K, EKSI S. Numerical investigation on stress concentration of corrosion pit[J]. Engineering Failure Analysis, 2009, 16(7):2467-2472. doi:10.1016/j.engfailanal.2009.04.004 [20] ASTM International. Standard guide for examination and evaluation of pitting corrosion:ASTM G46-94[S]. ASTM International, 1994. [21] GODARD H P. The corrosion behavior of aluminum in natural waters[J], The Canadian. Journal of Chemical Engineering, 1960, 38(5):167-173. doi:10.1002/cjce.5450380507 [22] HARLOW D G, WEI R P. Probabilities of occurrence and detection of damage in airframe materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22:427-436. doi:10.1046/j.1460-2695.1999.00168.X [23] CHEN G S, WAN K C, GAO M, et al. Transition from pitting to fatigue crack growth-Modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy[J]. Materials Science and Engineering:A, 1996, 219(1-2):126-132. doi:10.1016/S0921-5093(96)10414-7 [24] FUJITA T, SADAYASU T, TSUCHIDA E, et al. Stress concentration due to a hemispherical pit at a free surface of a thick plate under all-around tension[J]. Bulletin of the JSME, 1978, 21:561-565. doi:10.1299/kikai1938.43.2845 [25] TURNBULL A, HORNER D A, CONNOLLY B J. Challenges in modelling the evolution of stress corrosion cracks from pits[J]. Engineering Fracture Mechanics, 2009, 76(5):633-640. doi:10.1016/j.engfracmech.2008.09.004 |