[1] JIANG Shanliang, CHEN Chao, LI Guanbao, et al. Effect of salt contents on the gas hydrate anti-agglomerant performance[J]. Natural Gas Industry, 2019, 39(8): 120-125. doi: 10.3787/j.issn.1000-0976.2019.08.015 蒋善良, 陈超, 利观宝, 等. 盐含量对天然气水合物防聚剂性能的影响[J]. 天然气工业, 2019, 39(8): 120-125. doi: 10.3787/j.issn.1000-0976.2019.08.015 [2] WANG Zhiyuan, ZHAO Yang, SUN Baojiang, et al. Features and prevention of gas hydrate blockage in test strings of deep-water gas wells[J]. Natural Gas Industry, 2018, 38(1): 81-88. doi: 10.3787/j.issn.1000-0976.2018.01.010 王志远, 赵阳, 孙宝江, 等. 深水气井测试管柱内天然气水合物堵塞特征与防治新方法[J]. 天然气工业, 2018, 38(1): 81-88. doi: 10.3787/j.issn.1000-0976.2018.01.010 [3] HUO Hongjun, REN Shaoran, WANG Ruihe, et al. Experi-ment on synergetic effects of kinetic and thermodynamic hydrate inhibitors[J]. Journal of China University of Petroleum, 2012, 36(5): 110-113. doi: 10.3969/j.issn.1673-5005.2012.05.020 霍洪俊, 任韶然, 王瑞和, 等. 气体水合物动力学和热力学抑制剂复合作用试验[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 110-113. doi: 10.3969/j.issn.1673-5005.2012.05.020 [4] ZHAO Xin, QIU Zhengsong, JIANG Lin, et al. Study on high performance gas hydrate inhibitor in deepwater drilling fluid[J]. Journal of China University of Petroleum, 2013, 37(6): 159-164. doi: 10.3969/j.issn.1673-5005.2013.06.026 赵欣, 邱正松, 江琳, 等. 深水钻井液高效水合物抑制剂研究[J]. 中国石油大学学报(自然科学版), 2013, 37(6): 159-164. doi: 10.3969/j.issn.1673-5005.2013.06.026 [5] YANG Jian, FENG Yingying, ZHANG Benjian, et al. A blockage removal technology for natural gas hydrates in the wellbore of an ultra-high pressure sour gas well[J]. Natural Gas Industry, 2020, 40(9): 64-69. doi: 10.3787/-j.issn.1000-0976.2020.09.008 杨健, 冯莹莹, 张本健, 等. 超高压含硫气井井筒内天然气水合物解堵技术[J]. 天然气工业, 2020, 40(9): 64-69. doi: 10.3787/-j.issn.1000-0976.2020.09.008 [6] LI Xiangfang, LIU Wenyuan, LIU Shujie, et al. A prevention and control method for natural gas hydrate in pipe strings during deepwater gas well production tests[J]. Natural Gas Industry, 2019, 39(7): 63-72. doi: 10.3787/j.issn.1000-0976.2019.07.008 李相方, 刘文远, 刘书杰, 等. 深水气井测试求产阶段管柱内天然气水合物防治方法[J]. 天然气工业, 2019, 39(7): 63-72. doi: 10.3787/j.issn.1000-0976.2019.07.008 [7] FAN Shuanshi, GUO Kai, WANG Yanhong, et al. Present situation and prospect of performance evaluation methods for kinetic hydrate inhibitors(KHIs)[J]. Natural Gas Industry, 2018, 38(9): 103-113. doi: 10.3787/j.issn.1000-0976.2018.09.014 樊栓狮, 郭凯, 王燕鸿, 等. 天然气水合物动力学抑制剂性能评价方法的现状与展望[J]. 天然气工业, 2018, 38(9): 103-113. doi: 10.3787/j.issn.1000-0976.2018.09.014 [8] DORSTEWITZ F, MEWES D. The influence of heat transfer on the formation of hydrate layers in pipes[J]. International Journal of Heat and Mass Transfer, 1994, 37(14): 2131-2137. doi: 10.1016/0017-9310(94)90314-X [9] JOSHI S V, GRASSO G A, LAFOND P G, et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical Engineering Science, 2013, 97: 198-209. doi: 10.1016/j.ces.2013.04.019 [10] CAMARGO R, PALERMO T. Rheological properties of hydrate suspensions in an asphaltenic crude oil[C]. Proceedings of the 4th International Conference on Gas Hydrates, 2002. [11] WANG Zhiyuan, ZHAO Yang, SUN Baojiang, et al. Modeling of hydrate blockage in gas-dominated systems[J]. Energy & Fuels, 2016, 30(6): 4653-4666. doi: 10.1021/-acs.energyfuels.6b00521 [12] RAO I, KOH C A, SLOAN E D, et al. Gas hydrate deposition on a cold surface in water-saturated gas systems[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6262-6269. doi: 10.1021/ie400493a [13] LINGELEM M N, MAJEED A I, STANGE E, et al. Industrial experience in evaluation of hydrate formation, inhibition, and dissociation in pipeline design and operation[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 75-93. doi: 10.1111/j.1749-6632.1994.tb38825.x [14] ENGLEZOS P, KALOGERAKIS N, DHOLABHAI P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11): 2647-2658. doi: 10.1016/0009-2509(87)87015-X [15] TURNER D, CAROLYN A K. Development of a hydrate kinetic model and its incorporation into the olga2000$\circledR$ transient multi-phase flow simulator[C]. Trondheim, Norway: Proceeding of the 5th International Conference on Gas Hydrates, 2005. [16] GUHA A. Transport and deposition of particles in turbulent and laminar flow[J]. Annual Review of Fluid Mecha-nics, 2008, 40(1): 311-341. doi: 10.1146/annurev.fluid.40.111406.102220 [17] GOSMAN A D, LOANNIDES E. Aspects of computer simulation of liquid-fueled combustors[J]. Journal of Energy, 1983, 7(6): 482-490. doi: 10.2514/3.62687 [18] ESKIN D, RATULOWSKI J, AKBARZADEH K. Mode-ling of particle deposition in a vertical turbulent pipe flow at a reduced probability of particle sticking to the wall[J]. Chemical Engineering Science, 2011, 66(20): 4561-4572. doi: 10.1016/j.ces.2011.06.015 [19] GAO Yonghai, CHEN Ye, MENG Wenbo, et al. Hydrate critical deposition size in deep water gas well test and sensitive factors[J]. Journal of China University of Petroleum, 2018, 42(6): 161-170. doi: 10.3969/j.issn.1673-5005.2018.06.019 高永海, 陈野, 孟文波, 等. 深水气井测试水合物临界沉积粒径及敏感因素[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 161-170. doi: 10.3969/j.issn.1673-5005.2018.06.019 [20] O'NEILL M E. A sphere in contact with a plane wall in a slow linear shear flow[J]. Chemical Engineering Sci-ence, 1968, 23(11): 1293-1298. %doi: 10.1016/0009-2509(68)-89039-6 [21] TATTERSON D F, DALLMAN J C, HANRATTY T J. Drop sizes in annular gas-liquid flows[J]. AIChE Journal, 1977, 23(1): 68-76. doi: 10.1002/aic.690230112 [22] KATAOKA I, ISHⅡ M, NAKAYAMA A. Entrainment and desposition rates of droplets in annular two-phase flow[J]. International Journal of Heat and Mass Transfer, 2000, 43(9): 1573-1589. doi: 10.1016/S0017-9310(99)00236-7 [23] SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of pipeline hydrate particle agglo-meration based on population balance theory[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 251-261. doi: 10.1016/j.jngse.2018.01.009 [24] RABINOVICH Y I, ESAYANUR M S, MOUDGIL B M. Capillary forces between two spheres with a fixed volume liquid bridge: Theory and experiment[J]. Langmuir, 2005, 21(24): 10992-10997. doi: 10.1021/la0517639 [25] SERRA T, CASAMITJANA X. Effect of the shear and volume fraction on the aggregation and breakup of particles[J]. AIChE Journal, 1998, 44(8): 1724-1730. doi: 10.1002/aic.690440803 [26] LORENZO M D, AMAN Z M, SANCHEZ S G, et al. Hydrate formation in gas-dominant systems using a single-pass flowloop[J]. Energy & Fuels, 2014, 28(5): 3043- 3052. doi: 10.1021/ef500361r |