[1] 林铁锋, 康德江, 姜丽娜.松辽盆地北部扶余油层致密油地质特征及勘探潜力[J].大庆石油地质与开发, 2019, 38(5):94-100. doi:10.19597/J.ISSN.1000-3754.201906006 LIN Tiefeng, KANG Dejiang, JIANG Lina. Geological characteristics and exploration potential of the tight oil in Fuyu oil reservoirs of North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5):94-100. doi:10.19597/J.ISSN.1000-3754.201906006 [2] 庞正炼, 陶士振, 张景建, 等.四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J].天然气地球科学, 2019, 30(9):1301-1311. doi:10.11764/j.issn.1672-1926.2019.07.004 PANG Zhenglian, TAO Shizhen, ZHANG Jingjian, et al. Differentiation accumulation in multiple scales of tight oil and its main controlling factors of Jurassic Da'anzhai Member in Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(9):1301-1311. doi:10.11764/j.issn.1672-1926.2019.07.004 [3] 朱维耀, 岳明, 刘昀枫, 等.中国致密油藏开发理论研究进展[J].工程科学学报, 2019, 41(9):1103-1114. doi:10.13374/j.issn2095-9389.2019.09.001 ZHU Weiyao, YUE Ming, LIU Junfeng, et al. Research progress on tight oil exploration in China[J]. Chinese Journal of Engineering, 2019, 41(9):1103-1114. doi:10.13374/j.issn2095-9389.2019.09.001 [4] 郭建春, 赵志红, 路千里, 等.深层页岩缝网压裂关键力学理论研究进展[J].天然气工业, 2021, 41(1):102-117. doi:10.3787/j.issn.1000-0976.2021.01.009 GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1):102-117. doi:10.3787/j.issn.1000-0976.2021.01.009 [5] 白桦, 杨晓, 熊艳, 等.川中地区凉高山组湖岸线识别及致密油气有利区[J].天然气工业, 2022, 42(2):40-49. doi:10.3787/j.issn.1000-0976.2022.02.005 BAI Hua, YANG Xiao, XIONG Yan, et al. Determination of Lianggaoshan Formation lake strandline and favorable tight oil and gas areas in the Central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(2):40-49. doi:10.3787/j.issn.1000-0976.2022.02.005 [6] 朱如凯, 邹才能, 吴松涛, 等.中国陆相致密油形成机理与富集规律[J].石油与天然气地质, 2019, 40(6):1168-1184. doi:10.11743/ogg20190602 ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6):1168-1184. doi:10.11743/ogg20190602 [7] 赵文智, 胡素云, 侯连华, 等.中国陆相页岩油类型、资源潜力及与致密油的边界[J].石油勘探与开发, 2020, 47(1):1-10. doi:10.11698/PED.2020.01.01 ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1):1-10. doi:10.11698/PED.2020.01.01 [8] 徐加祥, 杨立峰, 丁云宏, 等.致密油水平井体积压裂产能影响因素[J].大庆石油地质与开发, 2020, 39(1):162-168. doi:10.19597/j.issn.1000-3754.201901041 XU Jiaxiang, YANG Lifeng, DING Yunhong, et al. Influencing factor on the productivity of the volume-fractured horizontal well in the tight oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(1):162-168. 10.19597/j.issn.1000-3754.201901041 [9] 赖令彬, 潘婷婷, 张虎俊, 等.压裂致密油藏产能递减分析方法[J].科学技术与工程, 2019, 19(18):183-188. doi:10.3969/j.issn.1671-1815.2019.18.027 LAI Lingbin, PAN Tingting, ZHANG Hujun, et al. Productivity decline analysis method for fractured tight oil reservoirs[J]. Science Technology and Engineering, 2019, 19(18):183-188. doi:10.3969/j.issn.1671-1815.2019.18.027 [10] 汪少勇, 黄福喜, 宋涛, 等.中国陆相致密油"甜点"富集高产控制因素及勘探建议[J].成都理工大学学报(自然科学版), 2019, 46(6):641-650. doi:10.3969/j.issn.1671-9727.2019.06.01 WANG Shaoyong, HUANG Fuxi, SONG Tao, et al. Enrichment and prolific factors of "sweet spots" of terrestrial tight oil in China and its exploration suggestion[J]. Journal of Chendou University of Technology(Science& Technology Edition), 2019, 46(6):641-650. doi:10.3969/j.issn.1671-9727.2019.06.01 [11] FENG F, HUANG R, GUO B, et al. A new method for evaluating the effectiveness of hydraulic fracturing in tight reservoirs[J]. Arabian Journal of Geosciences, 2019, 12(12):10-23. doi:10.1007/s12517-019-4501-2 [12] 唐鹏飞.致密油水平井裂缝穿层及延伸规律[J].大庆石油地质与开发, 2019, 38(6):169-174. doi:10.19597/J.ISSN.1000-3754.201903040 TANG Pengfei. Fracture penetration and propagation laws in tight-oil horizontal wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(6):169-174. doi:10.19597/J.ISSN.1000-3754.201903040 [13] 焦方正.非常规油气之"非常规"再认识[J].石油勘探与开发, 2019, 46(5):803-810. doi:10.11698/PED.2019.05.01 JIAO Fangzheng. Re-recognition of "unconventional" in unconventional oil and gas[J]. Petroleum Exploration and Development, 2019, 46(5):803-810. doi:10.11698/PED.2019.05.01 [14] YANG Zihao, LI Xiaochen, LI Danyang, et al. New method based on CO2 switchable wormlike micelles for controlling CO2 breakthrough in a tight fractured oil reservoir[J]. Energy & Fuels, 2019, 33(6):4806-4815. doi:10.1021/acs.energyfuels.9b00362 [15] 胡灵芝, 赵金洲, 魏鹏, 等.玉门H低渗透裂缝油藏强化泡沫防气窜实验研究[J].西南石油大学学报(自然科学版), 2019, 41(5):96-104. doi:10.11885/j.issn.1674-5086.2019.06.19.02 HU Lingzhi, ZHAO Jinzhou, WEI Peng, et al. An experimental study on enhanced foam anti-gas channeling in the Yumen H low permeability fractured reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(5):96-104. doi:10.11885/j.issn.1674-5086.2019.06.19.02 [16] 路向伟, 杨晋玉, 郑奎, 等.新安边油田安83区长7致密油藏空气泡沫驱数值模拟研究和试验效果评价[C].银川:第十三届宁夏青年科学家论坛石化专题论坛, 2017. LU Xiangwei, YANG Jinyu, DENG Kui, et al. Numerical simulation and experimental evaluation of air foam flooding in Chang 7 tight reservoir, An Block 83, Xing'anbian Oilfield[C]. Yinchuan:The 13th Ningxia Young Scientists Forum Special Forum on Petrochemicals, 2017. [17] 姚征, 吉子翔, 贺彤彤, 等. A井区长7致密油藏稳产技术研究[C].银川:第十五届宁夏青年科学家论坛石化专题论坛, 2019. YAO Zheng, JI Zixiang, HE Tongtong, et al. Study on stable production technology of Chang 7 tight reservoir in A Well Area[C]. Yinchuan:15th Ningxia Young Scientists Forum Special Forum on Petrochemicals, 2019. [18] 师晓伟, 杨海龙, 张建成, 等.甘谷驿油田1281井区自适应泡沫凝胶深部调控技术现场应用[J].非常规油气, 2017, 4(2):78-84. SHI Xiaowei, YANG Hailong, ZHANG Jiancheng, et al. Application of self-adaptive foam gel flooding technology in 1281 Well Area of Ganguyi Oilfield[J]. Unconventianl Oil & Gas, 2017, 4(2):78-84. [19] 刘中春, 汪勇, 侯吉瑞, 等.缝洞型油藏泡沫辅助气驱提高采收率技术可行性[J].中国石油大学学报(自然科学版), 2018, 42(1):113-118. doi:10.3969/j.issn.1673-5005.2018.01.014 LIU Zhongchun, WANG Yong, HOU Jirui, et al. Feasibility study on foam-assisted gas flooding EOR technology in karstic oil reservoir[J]. Journal of China University of Petroleum, 2018, 42(1):113-118. doi:10.3969/j.issn.1673-5005.2018.01.014 [20] 李松岩, 王麟, 韩瑞, 等.裂缝性致密油藏超临界CO2泡沫驱规律实验研究[J].油气地质与采收率, 2019, 27(1):1-7. doi:10.13673/j.cnki.cn37-1359/te.2020.01.004 LI Songyan, WANG Lin, HAN Rui, et al. Experimental study on supercritical CO2 foam flooding in fractured tight reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019, 27(1):1-7. doi:10.13673/j.cnki.cn37-1359/te.2020.01.004 [21] 李宾飞, 李兆敏, 吕其超, 等.泡沫在裂缝中流动特征的物理模拟[J].中南大学学报(自然科学版), 2017, 48(9):2465-2473. doi:10.11817/j.issn.1672-7207.2017.09.027 LI Binfei, LI Zhaomin, LÜ Qichao, et al. Physical simulation on flowing characteristics of foam in fracture[J]. Journal of Central South University(Science and Technology), 2017, 48(9):2465-2473. doi:10.11817/j.issn.1672-7207.2017.09.027 [22] WANNIARACHCHI W A M, RANJITH P G, PERERA M S A, et al. Current opinions on foam-based hydro-fracturing in deep geological reservoirs[J]. Geomechanics& Geophysics for Geoenergy & Georesources, 2015, 1:121-134. doi:10.1007/s40948-015-0015-x [23] WEI Bing, LI Qinzhi, JIN Fayang, et al. The Potential of a novel nano-fluid in enhancing oil recovery[J]. Energy & Fuels, 2016, 30(4):2882-2891. doi:10.1021/acs.energyfuels.6b00244 |