西南石油大学学报(自然科学版) ›› 2001, Vol. 23 ›› Issue (4): 23-25.DOI: 10.3863/j.issn.1000-2634.2001.04.07

• 石油工程 • 上一篇    下一篇

试井设计风险评价

曾德仁1 彭妥1 黄诚2 王永清2
  

  1. (1.中原油田陕北勘探开发处,河南 濮阳 457001; 2.西南石油学院,四川 南充 637001)
  • 收稿日期:2001-01-12 修回日期:1900-01-01 出版日期:2001-08-20 发布日期:2001-08-20

RISK EVALUATION OF WELL TEST DESIGN

ZENG De-ren1 PENG Tuo1 HUANG Cheng2 WANG Yong-qing2.

  

  1. (Zhongyuan Oil & Gas Field Company,Puyang,Henan 457001,China)
  • Received:2001-01-12 Revised:1900-01-01 Online:2001-08-20 Published:2001-08-20

摘要:

试井测试计划的安排往往带有一定的主观性和盲目性,设计目标可能与实施效果存在较大的差异,导致获取的测试资料可解释性差、结论不可靠。这一问题来源于两方面的困难:一是难于准确估计油气井、流体和储层的特性参数,二是缺少系统化的测试设计评价方法。通过建立测试模拟器实现全过程模拟,针对某组确定的设计参数产生解释诊断曲线,能够对设计方案进行评价。试井设计过程本身所涉及参数不确定性问题,应用蒙特卡洛模拟方法评价试井设计风险:不确定性参数随机抽样和测试模拟,以人工智能方法识别诊断曲线和评价测试合格率,确定出测试合格率的概率分布,从而指导优选设计方案,降低设计风险。

关键词: 试井, 设计, 模拟, 人工智能

Abstract:

The scheme for well test is frequently made empirically, and there may be large differences between the design goal of testing and the actual outcome, making data interpretation difficult and unreliable. The problems are mainly derived from two aspects: first is the difficulty of accurately estimating the parameters of the well, fluids and formations, and second is the lack of method for systematic evaluation of the test design. The design can be evaluated through well test simulator which generates diagnose curve for specific suit of parameters. Monte Carlo stochastic simulation is applied to evaluate risk derived from parameter uncertainty in well test design, in which artificial intelligence method is used to automatically recognize the curve and evaluate successful rate, and then to guide scheme adjustment to reduce risk.

Key words: well testing, design, simulation, artificial intelligence

中图分类号: