西南石油大学学报(自然科学版) ›› 2009, Vol. 31 ›› Issue (5): 105-108.DOI: 10.3863/j.issn.1674-5086.2009.05.022

• 石油与天然气工程 • 上一篇    下一篇

乌里雅斯太凹陷压裂选井选层研究

曾凡辉1 刘林1 王文耀2 王兴文1   

  1. 1.中国石化西南分公司工程技术研究院,四川德阳618000;2.“油气藏地质及开发工程”国家重点实验室 西南石油大学,四川成都610500
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-10-20 发布日期:2009-10-20

THE WELL AND LAYER SELECTION IN FRACTURING IN ULYASTAI SAG

ZENG Fan-hui1 LIU Lin1 WANG Wen-yao2 WANG Xin-wen1   

  1. 1.Research Institute of Engineering Technology,Southwest Petroleum Company,SINOPEC,Deyang Sichuan 618000,China;2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu Sichuan 610500,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-10-20 Published:2009-10-20

摘要: 乌里雅斯太凹陷砂砾岩油藏具有储层敏感性强、微裂缝发育、隔层应力低、射孔投产后产能低以及压裂后效果相差悬殊等特点。如何准确、定量优选出最具潜力的压裂井层已成为该油藏开发的瓶颈。根据对前期压裂井资料的统计分析,选取了地层系数、孔隙度、含油饱和度等地质参数以及排量、前置液百分数、加砂强度等工程参数作为影响压裂效果的主要因素,建立了压裂井的专家数据库。利用回归分析和BP神经网络对3口待压裂井进行了优选。实践表明,各影响因素与压裂效果之间存在非线性关系,线性回归不能满足优选压裂井的需要;二次回归和神经网络方法的拟合误差为0,预测误差不超过2%,可以满足现场压裂选井选层的需要。

关键词: 砂砾岩油藏, 压裂, 选井选层, 回归分析, 神经网络

Abstract: The sandstone and conglomerate reservoirs in Ulyastai Sag are characterized by strong sensitivity,developed micro-structures,low inter layer stress,low productivity after perforation and the huge difference in effectiveness after fracturing.Precisely and quantitatively selecting the best potential fracturing wells and layers have been the bottleneck in developing the reservoirs.According to the statistic analysis to the data of previous fractured wells,the formation coefficient,porosity and oil saturation etc,as well as displacement amount,proportion of pad fluid and sanding strength,are taken as the main factors influencing fracturing effectiveness.The expert database of the fractured wells is set up.Regression analysis and BP neural network are used to optimally select 3 waiting-for fracturing wells.Practice indicates that there is a nonlinear relationship between the factors and the fracturing effectiveness,the linear regression can not meet the requirement of optimally selecting fracturing wells,the matching error of second order regression and neural network method is 0,predicted error is less than 2%,which can reach the standard of in-situ selecting fracturing wells and layers.

Key words: sandstone and conglomerate reservoir, fracturing, well and layer selection, multiple regression, neural network

中图分类号: