[1] 李忠兴,韩洪宝,程林松,等. 特低渗油藏启动压力梯度新的求解方法及应用[J]. 石油勘探与开发,2004,31(3):107-109. doi:10.3321/j.issn:1000-0747.2004.03.029 LI Zhongxing, HAN Hongbao, CHENG Linsong, et al. A new method and application of threshold pressure gradient in ultra-low permeability reservoir[J]. Petroleum Exploration and Development, 2004, 31(3):107-109. doi:10.3321/j.issn:1000-0747.2004.03.029 [2] 孙志刚,马炳杰,李奋. 低渗透储层流体非线性渗流机理及特征分析[J]. 西南石油大学学报(自然科学版),2019,41(2):109-117. doi:10.11885/j.issn.1674-5086.2018.05.09.02 SUN Zhigang, MA Bingjie, LI Fen. mechanism and characteristics of nonlinear flow in porous media of low permeability reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(2):109-117. doi:10.11885/j.issn.1674-5086.2018.05.09.02 [3] WANG Huimin, WANG Jianguo, WANG Xiaolin, et al. Multi-scale insights on the threshold pressure gradient in low-permeability porous media[J]. Symmetry, 2020, 12(3):364. doi:10.3390/sym12030364 [4] DING Jingchen, YANG Shenglai, NIE Xiangrong, et al. Dynamic threshold pressure gradient in tight gas reservoir[J]. Journal of Natural Gas Science and Engineering, 2014, 20:155-160. doi:10.1016/j.jngse.2014.06.019 [5] 宋付权,刘慈群. 含启动压力梯度油藏的两相渗流分析[J]. 石油大学学报(自然科学版),1999,23(3):60-63,69. doi:10.3321/j.issn:1000-5870.1999.03.013 SONG Fuquan, LIU Ciqun. Two-phase seepage analysis of a reservoir with a starting pressure gradient[J]. Journal of the University of Petroleum (Edition of Natural Science), 1999, 23(3):60-63, 69. doi:10.3321/j.issn:1000-5870.1999.03.013 [6] 吕成远,王建,孙志刚. 低渗透砂岩油藏渗流启动压力梯度实验研究[J]. 石油勘探与开发,2002,29(2):86-89. doi:10.3321/j.issn:1000-0747.2002.02.023 LÜ Chengyuan, WANG Jian, SUN Zhigang. Experimental study on starting pressure gradient of seepage in low permeability sandstone reservoir[J]. Petroleum Exploration and Development, 2002, 29(2):86-89. doi:10.3321/j.issn:1000-0747.2002.02.023 [7] 熊伟,雷群,刘先贵,等. 低渗透油藏拟启动压力梯度[J]. 石油勘探与开发,2009,36(2):232-236. doi:10.3321/j.issn:1000-0747.2009.02.015 XIONG Wei, LEI Qun, LIU Xiangui, et al. Pseudo threshold pressure gradient to flow for low permeability reservoirs[J]. Petroleum Exploration and Development, 2009, 36(2):232-236. doi:10.3321/j.issn:1000-0747.2009.02.015 [8] 王中才. 微尺度毛细管中不相溶两相驱替特性的实验研究[D]. 武汉:武汉大学,2011. WANG Zhongcai. Experimental studies on the characteristics of immiscible displacements in microscale quartz capillaries[D]. Wuhan:Wuhan University, 2011. [9] 郝斐,程林松,李春兰,等. 特低渗透油藏启动压力梯度研究[J]. 西南石油学院学报,2006,28(6):29-32. doi:10.3863/j.issn.1674-5086.2006.06.008 HAO Fei, CHENG Linsong, LI Chunlan, et al. Study on threshold pressure gradient in ultra-low permeability reservoir[J]. Journal of Southwest Petroleum Institute, 2006, 28(6):29-32. doi:10.3863/j.issn.1674-5086.2006.06.008 [10] 李传亮. 启动压力梯度真的存在吗?[J]. 石油学报,2010,31(5):867-870. doi:10.7623/syxb201005031 LI Chuanliang. Is a starting pressure gradient necessary for flow in porous media?[J]. Acta Petrolei Sinica, 2010, 31(5):867-870. doi:10.7623/syxb201005031 [11] 李传亮. 毛管压力是油气运移的动力吗?——与李明诚教授商榷[J]. 岩性油气藏,2008,23(3):17-20. doi:10.3969/j.issn.1673-8926.2008.03.004 LI Chuanliang. Is capillary pressure the driving force in oil and gas migration?-Discussion with Prof. Li Mingcheng[J]. Lithologic Reservoirs, 2008, 23(3):17-20. doi:10.3969/j.issn.1673-8926.2008.03.004 [12] 吴克柳,陈掌星. 页岩气纳米孔气体传输综述[J]. 石油科学通报, 2016,1(1):91-127. doi:10.3969/j.issn.2096-1693.2016.01.007 WU Keliu, CHEN Zhangxing. Review of gas transport in nanopores in shale gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(1):91-127. doi:10.3969/j.issn.2096-1693.2016.01.007 [13] GAO Lichao, MCCARTHY T J. Contact angle hysteresis explained[J]. Langmuir, 2006, 22(14):6234-6237. doi:10.1021/la060254j [14] ERAL H B, MANNETJE D, OH J M. Contact angle hysteresis:A review of fundamentals and applications[J]. Colloid and Polymer Science, 2013, 291(2):247-260. doi:10.1007/s00396-012-2796-6 [15] CHIBOWSKI E, ONTIVEROS-ORTEGA A, PEREA-CARPIO R. On the interpretation of contact angle hysteresis[J]. Journal of Adhesion Science and Technology, 2002, 16(10):1367-1404. doi:10.1163/156856102320252859 [16] PAN Bin, LI Yajun, WANG Hongqian, et al. CO2 and CH4 wettabilities of organic-rich shale[J]. Energy & Fuels, 2018, 32(2):1914-1922. doi:10.1021/acs.energyfuels.7b01147 [17] PAN Bin, JONES F, HUANG Zhaoqin, et al. Methane (CH4) wettability of clay-coated quartz at reservoir conditions[J]. Energy & Fuels, 2019, 33:788-795. doi:10.1021/acs.energyfuels.8b03536 [18] PAN Bin, GONG Changping, WANG Xiaopu, et al. The interfacial properties of clay-coated quartz at reservoir conditions[J]. Fuel, 2020, 262(3):116461. doi:10.1016/j.fuel.2019.116461 [19] 王晓东,彭晓峰,王补宣. 动态湿润与动态接触角研究进展[J]. 应用基础与工程科学学报,2003,11(4):396-404. doi:10.3969/j.issn.1005-0930.2003.04.009 WANG Xiaodong, PENG Xiaofeng, WANG Buxuan. A review on dynamic wetting and dynamic contact angle[J]. Journal of Basic Science and Engineering, 2003, 11(4):396-404. doi:10.3969/j.issn.1005-0930.2003.04.009 [20] BLAKE T D. The physics of moving wetting lines[J]. Journal of Colloid & Interface Science, 2006, 299(1):1-13. doi:10.1016/j.jcis.2006.03.051 [21] BLAKE T D, SHIKHMURZAEV Y D. Dynamic wetting by liquids of different viscosity[J]. Journal of Colloid and Interface Science, 2002, 253(1):196-202. doi:10.1006/jcis.2002.8513 [22] BLAKE T D, FERNANDEZ-TOLEDANO J C, DOYEN G, et al. Forced wetting and hydrodynamic assist[J]. Physics of Fluids, 2015, 27(11):229-242. doi:10.1063/1.4934703 [23] LI Xingxun, FAN Xianfeng, ASKOUNIS A, et al. An experimental study on dynamic pore wettability[J]. Chemical Engineering Science, 2013, 104:988-997. doi:10.1016/j.es.2013.10.026 |