[1] WU Qi, XU Yun, WANG Xiaoquan, et al. Volume stimulation technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358. 吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术——内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358. [2] WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706-714. doi: 10.7623/syxb201404011 吴奇, 胥云, 张守良, 等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706-714. doi: 10.7623/syxb201404011 [3] WU Qi, XU Yun, LIU Yuzhang, et al. The current situation of stimulated reservoir volume for shale in U. S. and its inspiration to China[J]. Oil Drilling & Production Technology, 2011, 33(2): 1-7. doi: 10.3969/j.issn.1000-7393.2011.02.001 吴奇, 胥云, 刘玉章, 等. 美国页岩气体积改造技术现状及对我国的启示[J]. 石油钻采工艺, 2011, 33(2): 1-7. doi: 10.3969/j.issn.1000-7393.2011.02.001 [4] WU Qi, XU Yun, WANG Tengfei, et al. The resolution of reservoir stimulation: An introduction of volume stimulation[J]. Natural Gas Industry, 2011, 31(4): 7-12, 16. doi: 10.3787/j.issn.1000-0976.2011.04.002 吴奇, 胥云, 王腾飞, 等. 增产改造理念的重大变革——体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7-12, 16. doi: 10.3787/j.issn.1000-0976.2011.04.002 [5] HUANG Zhuo. Research on stress interference and propagation law of multi-fracture for "factory" fracturing[J]. Fault-Block Oil and Gas Field, 2022, 29(4): 572-576. doi: 10.6056/dkyqt202204023 黄卓. "工厂化"压裂多裂缝应力干扰与延伸规律研究[J]. 断块油气田, 2022, 29(4): 572-576. doi: 10.6056/dkyqt202204023 [6] XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-887. doi: 10.11698/PED.2018.05.14 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887. doi: 10.11698/PED.2018.05.14 [7] AL-RBEAWI S. An approach for the performance-impact of parent-child wellbores spacing and hydraulic fractures cluster spacing in conventional and unconventional reservoirs-sciencedirect[J]. Journal of Petroleum Science and Engineering, 2019, 185: 106570. doi: 10.1016/j.petrol.2019.106570 [8] GAKHAR K, SHAN D, RODIONOV Y, et al. Engineered approach for multi-well pad development in Eagle Ford shale[C]. San Antonio: the 4th Unconventional Resources Technology Conference, 2016. doi: 10.15530/urtec-2016-2431182 [9] XIONG Hongjie, LIU Songxia, FENG Feng, et al. Optimize completion design and well spacing with the latest complex fracture modeling & reservoir simulation technologies—A permian basin case study with seven wells[C]. SPE 194367-MS, 2019. doi: 10.2118/194367-MS [10] XIONG Hongjie, WU Weiwei, GAO Sunhua. Optimizing well completion design and well spacing with integration of advanced multi-stage fracture modeling & reservoir simulation—A permian basin case study[C]. SPE 189855-MS, 2018. doi: 10.2118/189855-MS [11] JONES M. Model-based cluster spacing optimization increase recovery and profitability in Eagle Ford[C]. SPE 194036-STU, 2018. doi: 10.2118/194036-STU [12] FOWLER G, MCCLURE M, CIPOLLA C. A Utica case study: The impact of permeability estimates on history matching, fracture length, and well spacing[C]. SPE 195980-MS, 2019. doi: 10.2118/195980-MS [13] LI Guoxin, LEI Zhengdong, DONG Weihong, et al. Progress, challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2022, 27(1): 1-11. doi: 10.3969/j.issn.1672-7703.2022.01.001 李国欣, 雷征东, 董伟宏, 等. 中国石油非常规油气开发进展、挑战与展望[J]. 中国石油勘探, 2022, 27(1): 1-11. doi: 10.3969/j.issn.1672-7703.2022.01.001 [14] HE Yonghong, XUE Ting, LI Zhen, et al. Development technologies for Triassic Chang 7 shale oil in Ordos Basin: A case study of Qingcheng Oilfield, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1245-1258. doi: 10.11698/PED.20230248 何永宏, 薛婷, 李桢, 等. 鄂尔多斯盆地长7页岩油开发技术实践: 以庆城油田为例[J]. 石油勘探与开发, 2023, 50(6): 1245-1258. doi: 10.11698/PED.20230248 [15] ZHANG Kuangsheng, XUE Xiaojia, TAO Liang, et al. New method for evaluating the volume fracturing fracture network sweep volume in shale oil horizontal wells and its application[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 127-134. doi: 10.3969/j.issn.1006-6535.2023.05.017 张矿生, 薛小佳, 陶亮, 等. 页岩油水平井体积压裂缝网波及体积评价新方法及应用[J]. 特种油气藏, 2023, 30(5): 127-134. doi: 10.3969/j.issn.1006-6535.2023.05.017 [16] WANG Hao, TANG Wen, ZHANG Pengpeng, et al. Study on parameter optimization of fractured horizontal wells in shale gas reservoir considering net present value[J]. Fault-Block Oil and Gas Field, 2023, 30(2): 205-212. doi: 10.6056/dkyqt202302004 王昊, 唐雯, 张鹏鹏, 等. 考虑净现值的页岩气藏压裂水平井参数优化研究[J]. 断块油气田, 2023, 30(2): 205-212. doi: 10.6056/dkyqt202302004 [17] LEI Qun, YANG Lifeng, DUAN Yaoyao, et al. The "fracture-controlled reserves" based stimulation technology for unconventional oil and gas reservoirs[J]. Petroleum Exploration and Development, 2018, 45(4): 719-726. doi: 10.11698/PED.2018.04.18 雷群, 杨立峰, 段瑶瑶, 等. 非常规油气"缝控储量"改造优化设计技术[J]. 石油勘探与开发, 2018, 45(4): 719-726. doi: 10.11698/PED.2018.04.18 [18] LEI Qun, GUAN Baoshan, CAI Bo, et al. Technological progress and prospects of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 580-587. doi: 10.11698/PED.2019.03.16 雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 580-587. doi: 10.11698/PED.2019.03.16 [19] ZHONG Hongli, ZHUO Zimin, ZHANG Fengqi, et al. Heterogeneity of Chang 7 shale oil reservoir and its oil control law in Ganquan Area, Ordos Basin[J]. Special Oil & Gas Reservoirs, 2023, 30(4): 10-18. doi: 10.3969/j.issn.1006-6535.2023.04.002 钟红利, 卓自敏, 张凤奇, 等. 鄂尔多斯盆地甘泉地区长7页岩油储层非均质性及其控油规律[J]. 特种油气藏, 2023, 30(4): 10-18. doi: 10.3969/j.issn.1006-6535.2023.04.002 [20] ZHOU Zhongya. Mechanism of fracture extension and process countermeasures in grain-type shale oil reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(6): 141-149. doi: 10.3969/j.issn.1006-6535.2023.06.019 周忠亚. 纹层型页岩油储层裂缝扩展机理及工艺对策[J]. 特种油气藏, 2023, 30(6): 141-149. doi: 10.3969/j.issn.1006-6535.2023.06.019 [21] WANG Chen, GAO Hui, FEI Erzhan, et al. Imbibition of fracturing fluid and microscopic oil production characteristics in Chang 7 shale reservoir in Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(6): 95-103. doi: 10.3969/j.issn.1673-5005.2023.06.011 王琛, 高辉, 费二战, 等. 鄂尔多斯盆地长7页岩储层压裂液渗吸规律及原油微观动用特征[J]. 中国石油大学学报(自然科学版), 2023, 47(6): 95-103. doi: 10.3969/j.issn.1673-5005.2023.06.011 [22] LI Yang, ZHAO Qingmin, LÜ Qi, et al. Evaluation technology and practice of continental shale oil development in China[J]. Petroleum Exploration and Development, 2022, 49(5): 955-964. doi: 10.11698/PED.20220177 李阳, 赵清民, 吕琦, 等. 中国陆相页岩油开发评价技术与实践[J]. 石油勘探与开发, 2022, 49(5): 955-964. doi: 10.11698/PED.20220177 [23] LEE W J. Well testing, SPE textbook series[M]. Richardson: Society of Petroleum Engineers, 1982. %TX [24] XIONG Jian, WU Jun, LIU Xiangjun, et al. The geomechanical characteristics of the continental shale reservoirs and their influence on the fracturing effect[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(5): 69-80. doi: 10.11885/j.issn.1674-5086.2021.12.28.01 熊健, 吴俊, 刘向君, 等. 陆相页岩储层地质力学特性及对压裂效果的影响[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 69-80. doi: 10.11885/j.issn.1674-5086.2021.12.28.01 [25] YUAN Shiyi, LEI Zhengdong, LI Junshi, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 13-24. doi: 10.3969/j.issn.1673-5005.2023.05.002 袁士义, 雷征东, 李军诗, 等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 13-24. doi: 10.3969/j.issn.1673-5005.2023.05.002 [26] LI Gao, ZHANG Yi, YANG Xu. Engineering geological mechanics issues and research methods in oil and gas exploration and development[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(3): 72-80. doi: 10.11885/j.issn.1674-5086.2023.02.26.01 李皋, 张毅, 杨旭. 油气勘探开发中的工程地质力学问题及研究方法[J]. 西南石油大学学报(自然科学版), 2023, 45(3): 72-80. doi: 10.11885/j.issn.1674-5086.2023.02.26.01 [27] OSORIO J G, CHEN H Y, TEUFEL L W. Numerical simulation of the impact of flow-induced geomechanical response on the productivity of stress-sensitive reservoirs[C]. SPE 51929-MS, 1999. doi: 10.2118/51929-MS [28] WENG X, KRESSE O, COHEN C, et al. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[C]. SPE 140253-PA, 2011. doi: 10.2118/140253-PA [29] KRESSE O, WENG X, GU H, et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[C]. Chicago: the 46th U.S. Rock Mechanics/Geomechanics Symposium, 2012. [30] WANG Erjun, MA Lei, CAO Feng, et al. Research on optimization and application of fracturing perforation orientation in directional wells based on minimum initiation pressure[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(1): 117-126. doi: 10.11885/j.issn.1674-5086.2021.01.28.02 王尔钧, 马磊, 曹峰, 等. 定向井压裂射孔方位优化及应用研究[J]. 西南石油大学学报(自然科学版), 2023, 45(1): 117-126. doi: 10.11885/j.issn.1674-5086.2021.01.28.02 [31] WATTENBARGER R A, EL-BANBI A H, VILLEGAS M E, et al. Production analysis of linear flow into fractured tight gas wells[C]. SPE 39931-MS, 1998. doi: 10.2118/39931-MS [32] CHEN Ming, ZHANG Shicheng, XU Yun, et al. A numerical method for simulating planar 3D multi-fracture propagation in multi-stage fracturing of horizontal wells[J]. Petroleum Exploration and Development, 2020, 47(1): 163-174. doi: 10.11698/PED.2020.01.16 陈铭, 张士诚, 胥云, 等. 水平井分段压裂平面三维多裂缝扩展模型求解算法[J]. 石油勘探与开发, 2020, 47(1): 163-174. doi: 10.11698/PED.2020.01.16 [33] XIONG Hongjie. The effective cluster spacing plays the vital role in unconventional reservoir development-permian basin case studies[C]. SPE 199721-MS, 2020. doi: 10.2118/199721-MS |