[1] TAO Shu, TANG Dazhen, XU Hao, et al. Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang Block, Southern Qinshui Basin[J]. International Journal of Coal Geology, 2014, 134-135:38-45. doi:10.1016/j.coal.2014.10.002
[2] TIAN Lin, CAO Yunxing, CHAI Xuezhou, et al. Best practices for the determination of low-pressure/permeability coalbed methane reservoirs, Yuwu Coal Mine, Luan mining area, China[J]. Fuel, 2015, 160:100-107. doi:10.1016/j.fuel.2015.07.082
[3] 周军平,鲜学福,姜永东,等. 考虑有效应力和煤基质收缩效应的渗透率模型[J]. 西南石油大学学报(自然科学版),2009,31(1):4-8. doi:10.3863/j.issn.16745086.2009.01.002 ZHOU Junping, XIAN Xuefu, JIANG Yongdong, et al. A permeability model considering the effective stress and coal matrix shrinking effect[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(1):4-8. doi:10.3863/j.issn.1674-5086.2009.01.002
[4] CONNELL L, LU Meng, PAN Zhejun. An analytical coal permeability model for tri-axial strain and stress conditions[J]. International Journal of Coal Geology, 2010, 84(2):103-114. doi:10.1016/j.coal.2010.08.011
[5] HARPALANI S, CHEN G. Influence of gas production induced volumetric strain on permeability of coal[J]. Geotechnical & Geological Engineering, 1997, 15(4):303-325.
[6] PALMER I. Permeability changes in coal:Analytical modeling[J]. International Journal of Coal Geology, 2009, 77(1):119-126. doi:10.1016/j.coal.2008.09.006
[7] 徐宏杰,桑树勋,易同生,等. 黔西地区煤层埋深与地应力对其渗透性控制机制[J]. 地球科学—中国地质大学学报,2014,39(11):1607-1616. doi:10.3799/dqkx.2014.143 XU Hongjie, SANG Shuxun, YI Tongsheng, et al. Control mechanism of buried depth and in-situ stress for coal reservoir permeability in western Guizhou[J]. Earth Science:Journal of China University of Geosciences, 2014, 39(11):1607-1616. doi:10.3799/dqkx.2014.143
[8] FU Xuehai, QIN Yong, WANG G G X, et al. Evaluation of coal structure and permeability with the aid of geophysical logging technology[J]. Fuel, 2009, 88(11):2278-2285. doi:10.1016/j.fuel.2009.05.018
[9] CHEN Yaxi, LIU Dameng, YAO Yanbin, et al. Dynamic permeability change during coalbed methane production and its controlling factors[J]. Journal of Natural Gas Science and Engineering, 2015, 25:335-346. doi:10.1016/j.jngse.2015.05.018
[10] 张培河. 基于生产数据分析的沁水南部煤层渗透性研究[J]. 天然气地球科学, 2010, 21(3):503-507. ZHANG Peihe. Study of permeability of coal seam based on data well production in south Qinshui Basin[J]. Natural Gas Geoscience, 2010, 21(3):503-507.
[11] 莫日和,张芬娜,綦耀光,等. 煤层气井有杆泵内煤粉沉积的影响因素分析[J]. 西南石油大学学报(自然科学版), 2016, 38(5):143-150. doi:10.11885/j.issn.16745086.2014.10.31.05 MO Rihe, ZHANG Fenna, QI Yaoguang, et al. Movement of pulverized coal in sucker rod pump in coalbed methane well[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(5):143-150. doi:10.11885/j.issn.1674-5086.2014.10.31.05
[12] 孟召平,张纪星,刘贺,等. 考虑应力敏感性的煤层气井产能模型及应用分析[J]. 煤炭学报, 2014, 39(4):593-599. doi:10.13225/j.cnki.jccs.2013.1780 MENG Zhaoping, ZHANG Jixing, LIU He, et al. Productivity model of CBM wells considering the stress sensitivity and its application analysis[J]. Journal of China Coal Society, 2014, 39(4):593-599. doi:10.13225/j.cnki.jccs.2013.1780
[13] 汤达祯,赵俊龙,许浩,等. 中高煤阶煤层气系统物质能量动态平衡机制[J]. 煤炭学报, 2016, 41(1):40-48. doi:10. 13225/j.cnki.jccs.2015.9009 TANG Dazhen, ZHAO Junlong, XU Hao, et al. Material and energy dynamic balance mechanism in middle-high rank coalbed methane (CBM) systems[J]. Journal of China Coal Society, 2016, 40(1):40-48. doi:10. 13225/j.cnki.jccs.2015.9009
[14] WANG Gang, QIN Yong, XIE Yiwei, et al. The division and geologic controlling factors of a vertical superimposed coalbed methane system in the northern Gujiao blocks, China[J]. Journal of Natural Gas Science and Engineering, 2015, 24:379-389. doi:10.1016/j.jngse.2015.04.005
[15] XIA Peng, ZENG Fangui, SONG Xiaoxia. Parameters controlling high-yield coalbed methane vertical wells in the B3 area, Xishan coal field, Shanxi, China[J]. Energy Exploration & Exploitation, 2016, 34(5):711-734. doi:10.1177/0144598716656066
[16] 逄建东,汪雷,臧晓琳,等. 古交地区煤层气地质条件及资源潜力分析[J]. 科学技术与工程, 2015, 15(33):155-160, 165. doi:10.3969/j.issn.1671-1815.2015.33.027 PANG Jiandong, WANG Lei, ZANG Xiaolin, et al. The geological conditions and resource potential analysis of coal bed gas in Gujiao area[J]. Science Technology and Engineering, 2015, 15(33):155-160, 165. doi:10.3969/j.issn.1671-1815.2015.33.027
[17] 倪小明,苏现波,张小东. 煤层气开发地质学[M]. 北京:化学工业出版社, 2010.
[18] 秦义,李仰民,白建梅,等. 沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J]. 天然气工业,2011,31(11):22-25. doi:10.3787/j.issn.1000-0976.2011.11.006 QIN Yi, LI Yangmin, BAI Jianmei, et al. Technologies in the CBM drainage and production of wells in the southern Qinshui basin with high-rank coal beds[J]. Natural Gas Industry, 2011, 31(11):22-25. doi:10.3787/j.issn.10000976.2011.11.006
[19] 孟艳军,汤达祯,李治平,等. 高煤阶煤层气井不同排采阶段渗透率动态变化特征与控制机理[J]. 油气地质与采收率, 2015, 22(2):66-71. doi:10.3969/j.issn.10099603.2015.02.012 MENG Yanjun, TANG Dazhen, LI Zhiping, et al. Dynamic variation characteristics and mechanism of permeability in high-rank CBM wells at different drainage and production stages[J]. Petroluem Geology and Recovery Efficiency, 2015, 22(2):66-71. doi:10.3969/j.issn.10099603.2015.02.012
[20] 张政,秦勇, WANG Guoxiong,等. 基于等温吸附实验的煤层气解吸阶段数值描述[J]. 中国科学:地球科学, 2013, 43(8):1352-1358. ZHANG Zheng, QIN Yong, WANG Guoxiong, et al. Numerical description of coalbed methane desorption stages based on isothermal adsorption experiment[J]. Science China Earth Sciences, 2013, 43(8):1352-1358.
[21] MENG Yanjun, TANG Dazhen, XU Hao, et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development, 2014, 41(5):671-677. doi:10.1016/S1876-3804(14)60080-X
[22] MA Feiying, WANG Yongqing, LI Haitao, et al. Staged coalbed methane desorption and the contribution of each stage to productivity[J]. Chemistry and Technology of Fuels and Oils, 2014, 50(5):448-448. doi:10.1007/s10553014-0531-3
[23] PALMER I. Coalbed methane completions:A world view[J]. International Journal of Coal Geology, 2010, 82(3):184-195. doi:10.1016/j.coal.2009.12.010
[24] ALEXIS D A, KARPYN Z T, ERTEKIN T, et al. Fracture permeability and relative permeability of coal and their dependence on stress conditions[J]. Journal of Unconventional Oil and Gas Resources, 2015, 10:1-10. doi:10.1016/j.juogr.2015.02.001
[25] HAM Y, KANTZAS A. Measurement of relative permeability of coal:Approaches and limitations[C]. SPE 114994, 2008. doi:10.2118/114994-MS
[26] 崔玉峰,王贵文,孙艳慧,等. 低孔低渗储层物性下限确定方法及其适用性[J]. 西南石油大学学报(自然科学版), 2016, 38(6):35-48. doi:10.11885/j.issn.16745086.2015.02.04.05 CUI Yufeng, WANG Guiwen, SUN Yanhui, et al. Methods of cutoff determination and applicability analysis in low porosity and low permeability reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(6):35-48. doi:10.11885/j.issn.1674-5086.2015.02.04.05
[27] SEIDLE J P, JEANSONNE M W, ERICKSON D J. Application of matchstick geometry to stress dependent permeability in coals[C]. SPE 24361, 1992. doi:10.2118/24361MS
[28] SHI Jiquan, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery[C]. SPE 87230, 2005. doi:10.2118/87230-PA
[29] XU Hao, TANG Dazhen, TANG Shuheng, et al. A dynamic prediction model for gas-water effective permeability based on coalbed methane production data[J]. International Journal of Coal Geology, 2014, 121(1):44-52. doi:10.1016/j.coal.2013.11.008
[30] 孟召平,田永东,李国富. 煤层气开发地质学理论与方法[M]. 北京:科学出版社, 2010.
[31] BALAN H O, GUMRAH F. Assessment of shrinkage-swelling influences in coal seams using rankdependent physical coal properties[J]. International Journal of Coal Geology, 2009, 77(1):203-213. doi:10.1016/j. coal.2008.09.014
[32] 胡素明,李相方. 考虑煤自调节效应的煤层气藏物质平衡方程[J]. 天然气勘探与开发, 2010, 33(1):38-41. doi:10.3969/j.issn.1673-3177.2010.01.009 HU Suming, LI Xiangfang. Material balance equation of coalbed methane reservoir with consideration of selfadjustment effect of coal[J]. Natural Gas Exploration and Development, 2010, 33(1):38-41. doi:10.3969/j.issn.1673-3177.2010.01.009 |