西南石油大学学报(自然科学版) ›› 2020, Vol. 42 ›› Issue (4): 1-12.DOI: 10.11885/j.issn.1674-5086.2020.04.09.01
• GEOLOGY EXPLORATION • Next Articles
JIANG Tongwen, ZHANG Hui, XU Ke, WANG Zhimin, WANG Haiying
Received:
2020-04-09
Online:
2020-08-10
Published:
2020-08-10
CLC Number:
JIANG Tongwen, ZHANG Hui, XU Ke, WANG Zhimin, WANG Haiying. Reservoir Geomechanical Characteristics and the Influence on Development in Keshen Gas Field[J]. 西南石油大学学报(自然科学版), 2020, 42(4): 1-12.
[1] TEUFEL L W, RHETT D W. Geomechanical evidence for shear failure of chalk during production of the Ekofisk Field[C]. SPE 22755-MS, 1991. doi:10.2118/22755-MS [2] ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2007. [3] HENNINGS P, ALLWARDT P, PAUL P, et al. Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban Gas Field, Sumatra, Indonesia[J]. AAPG Bulletin, 2012, 96(4):753-772. doi:10.1306/08161109084 [4] JOHRI M, ZOBACK M D. The evolution of stimulated reservoir volume during hydraulic stimulation of shale gas formations[C]. Unconventional Resources Technology Conference, 2013. doi:10.1190/urtec2013-170 [5] WIPRUT D J, ZOBACK M D. High horizontal stress in the Visund Field, Norwegian North Sea:Consequences for borehole stability and sand production[C]. SPE 47244-MS, 1998. doi:10.2118/47244-MS [6] WILLSON S M, LAST N C, ZOBACK M D, et al. A wellbore stability approach for complex geologic conditions[C]. SPE 53940-MS, 1999. doi:10.2118/53940-MS [7] OTTESEN S. Wellbore stability in fractured rock[C]. SPE 128728-MS, 2010. doi:10.2118/128728-MS [8] WU B, TAN C P. Sand production prediction of gas field:Methodology and field application[C]. SPE 78234-MS, 2002. doi:10.2118/78234-MS [9] ABASS H H, HABBTAR A H, SHEBATALHAMD A. Sand control during drilling, perforation, completion and production[C]. SPE 81492, 2003. doi:10.2118/81492-MS [10] 孙贺东,常宝华,张静楠,等. 裂缝性致密砂岩气藏出砂原因及对产气量的影响——以塔里木盆地克深气田为例[J]. 天然气工业, 2018, 38(11):52-58. doi:10.3787/j.issn.1000-0976.2018.11.006 SUN Hedong, CHANG Baohua, ZHANG Jingnan, et al. Causes of sand production and its influence on the output of fractured tight sandstone gas reservoirs:A case study on the Keshen Gas Field, Tarim Basin[J]. Natural Gas Industry, 2018, 38(11):52-58. doi:10.3787/j.issn.1000-0976.2018.11.006 [11] KING G E. Thirty years of gas shale fracturing:What have we learned?[C]. SPE 133456-MS, 2010. doi:10.2118/133456-MS [12] ZOBACK M D, KOHLI A, DAS I, et al. The importance of slow slip on faults during hydraulic fracturing stimulation of shale gas reservoirs[C]. SPE 155476-MS, 2012. doi:10.2118/155476-MS [13] BARTON C A, ZOBACK M D, MOOS D. Fluid flow along potentially active faults in crystalline rock[J]. Geology, 1995, 23(8):683-686. [14] CHEN H Y, TEUFEL L W. Reservoir stress changes induced by production/injection[C]. SPE 71087-MS, 2001. doi:10.2523/71087-MS [15] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4):603-622. doi:10.1306/11010606061 [16] DWI H F, NATALIA S, CASTILLO D. The effect of pressure depletion on geomechanical stress and fracture behavior in Gunung Kembang Field[C]. Indonesian Petroleum Association, Thirty-first Annual Convention and Exhibition, 2007. [17] TAMAGAWA T, POLLARD D D. Fracture permeability created by perturbed stress fields around active faults in a fractured basement reservoir[J]. AAPG Bulletin, 2008, 92(6):743-764. doi:10.1306/02050807013 [18] TAO Qingfeng, EHLIG-ECONOMIDES C A, GHASSEMI A. Investigation of stress-dependent permeability in naturally fractured reservoirs using a fully coupled poroelastic displacement discontinuity model[C]. SPE 124745-MS, 2009. doi:10.2118/124745-MS [19] FRANQUET J A, KRISADASIMA S, BAL A, et al. Critically-stressed fracture analysis contributes to determining the optimal drilling trajectory in naturally fractured reservoirs[C]. SPE 12669-MS, 2008. doi:10.2523/12669-MS [20] JIANG Tongwen, ZHANG Hui, WANG Haiying, et al. Investigation of faults geomechanical activity and its application to development program optimization in Kelasu Gas Field in Tarim Basin[C]. SPE 187138-MS, 2017. doi:10.2118/187138-MS [21] CAI Zhenzhong, ZHANG Hui, YANG Haijun, et al. Investigation of geomechanical response of fault in carbonate reservoir and its application to well placement optimization in YM2 Oilfield in Tarim Basin[C]. SPE 175017-MS, 2015. doi:10.2118/175017-MS [22] YANG Haijun, ZHANG Hui, CAI Zhenzhong, et al. The relationship between geomechanical response of natural fractures and reservoir productivity in Keshen tight sandstone Gas Field, Tarim Basin, China[C]. SPE 176840-MS, 2015. doi:10.2118/176840-MS [23] 雷刚林,谢会文,张敬洲,等. 库车坳陷克拉苏构造带构造特征及天然气勘探[J]. 石油与天然气地质, 2007, 28(6):816-820. doi:10.3321/j.issn:0253-9985.2007.06.017 LEI Ganglin, XIE Huiwen, ZHANG Jingzhou, et al. Structural features and natural gas exploration in the Kelasu structural belt, Kuqa Depression[J]. Oil & Gas Geology, 2007, 28(6):816-820. doi:10.3321/j.issn:0253-9985.2007.06.017 [24] 漆家福,雷刚林,李明刚, 等. 库车坳陷克拉苏构造带的结构模型及其形成机制[J]. 大地构造与成矿学,2009,33(1):49-56. doi:10.3969/j.issn.1001-1552.2009.01.007 QI Jiafu, LEI Ganglin, LI Minggang, et al. Analysis of structure model and formation mechanism of Kelasu structure zone, Kuqa Depression[J]. Geotectonica et Metallogenia, 2009, 33(1):49-56. doi:10.3969/j.issn.1001-1552.2009.01.007 [25] 王招明,李勇,谢会文,等. 库车前陆盆地超深油气地质理论与勘探实践[M]. 北京:石油工业出版社, 2017. WANG Zhaoming, LI Yong, XIE Huiwen, et al. Geological theory and exploration practice of ultra deep oil and gas in Kuqa foreland Basin[M]. Beijing:Petroleum Industry Press, 2017. [26] 张惠良,张荣虎,杨海军,等. 构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J]. 岩石学报, 2012, 28(3):827-835. ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir:A Cretaceous example from Kuqa foreland Basin[J]. Acta Petrologica Sinica, 2012, 28(3):827-835. [27] 周鹏,唐雁刚,尹宏伟,等. 塔里木盆地克拉苏构造带克深2气藏储层裂缝带发育特征及与产量关系[J]. 天然气地球科学,2017,28(1):135-145. doi:10.11764/j.issn.1672-1926.2016.11.028 ZHOU Peng, TANG Yangang, YIN Hongwei, et al. Relationship between characteristics of fracture belt and production of Keshen 2 gas reservior in Kelasu tectonic zone, Tarim Basin[J]. Natural Gas Geoscience, 2017, 28(1):135-145. doi:10.11764/j.issn.1672-1926.2016.11.028 [28] 王珂,杨海军,张惠良,等. 超深层致密砂岩储层构造裂缝特征与有效性——以塔里木盆地库车坳陷克深8气藏为例[J]. 石油与天然气地质, 2018, 39(4):719-729. doi:10.11743/ogg20180409 WANG Ke, YANG Haijun, ZHANG Huiliang, et al. Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:A case study of Keshen 8 gas pool in Kuqa Depression, Tarim Basin[J]. Oil and Gas Geology, 2018, 39(4):719-729. doi:10.11743/ogg20180409 [29] 冯许魁,刘军,刘永雷,等. 库车前陆冲断带突发构造发育特点[J]. 成都理工大学学报(自然科学版), 2015, 42(3):296-302. doi:10.3969/j.issn.1671-9727.2015.03.05 FENG Xukui, LIU Jun, LIU Yonglei, et al. Development characteristics of pop-up structure in Kuqa foreland thrust belt, northern Tarim Basin, China[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 2015, 42(3):296-302. doi:10.3969/j.issn.1671-9727.2015.03.05 [30] 易士威,杨海军,李君,等. 塔里木盆地前陆冲断带含油气构造样式及成藏主控因素[J]. 新疆石油地质, 2012, 33(3):272-276. YI Shiwei, YANG Haijun, LI Jun, et al. Petroliferous structural styles and oil-accumulation control factors in foreland thrust belt in Tarim Basin[J]. Xinjiang Petroleum Geology, 2012, 33(3):272-276. [31] 张荣虎,杨海军,王俊鹏,等. 库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J]. 石油学报, 2014, 35(6):1057-1069. doi:10.7623/syxb201406003 ZHANG Ronghu, YANG Haijun, WANG Junpeng, et al. The formation mechanism and exploration significance of ultra-deep, low-porosity and tight sandstone reservoirs in Kuqa Depression, Tarim Basin[J]. Acta Petrolei Sinica, 2014, 35(6):1057-1069. doi:10.7623/syxb201406003 [32] 江同文,孙雄伟. 库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J]. 天然气工业, 2018, 38(6):1-9. doi:10.3787/j.issn.1000-0976.2018.06.001 JIANG Tongwen, SUN Xiongwei. Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa foreland Basin, Tarim Basin:Understanding points and technical counter measures[J]. Natural Gas Industry, 2018, 38(6):1-9. doi:10.3787/j.issn.1000-0976.2018.06.001 [33] 杨海军,张荣虎,杨宪彰,等. 超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J]. 天然气地球科学, 2018, 29(7):942-950. doi:10.11764/j.issn.1672-1926.2018.06.018 YANG Haijun, ZHANG Ronghu, YANG Xianzhang, et al. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir:A case study of Keshen Gas Field, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(7):942-950. doi:10.11764/j.issn.1672-1926.2018.06.018 [34] 王振彪,孙雄伟,肖香姣. 超深超高压裂缝性致密砂岩气藏高效开发技术——以塔里木盆地克拉苏气田为例[J]. 天然气工业,2018,38(4):87-95. doi:10.3787/j.issn.1000-0976.2018.04.010 WANG Zhenbiao, SUN Xiongwei, XIAO Xiangjiao. Efficient development technologies for ultradeep, overpressured and fractured sand-stone gas reservoirs:A cased study of the Kelasu Gas Field in the Tarim Basin[J]. Natural Gas Industry, 2018, 38(4):87-95. doi:10.3787/j.issn.1000-0976.2018.04.010 [35] 王洪峰,李晓平,王小培,等. 多井干扰试井技术在克深气田勘探开发中的应用[J]. 油气地质与采收率, 2018, 25(1):100-105. doi:10.13673/j.cnki.cn37-1359/te.2018.01.016 WANG Hongfeng, LI Xiaoping, WANG Xiaopei, et al. Application of multi-well interference test technology in exploration and development of Keshen Gas Field[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(1):100-105. doi:10.13673/j.cnki.cn37-1359/te.2018.01.016 [36] ZHANG Hui, QIU Kaibin, FULLER J. Geomechanical evaluation enabled successful stimulation of a highpressure/high-temperature tight gas reservoir in Western China[C]. SPE 178438-PA, 2015. doi:10.2118/178438-PA [37] PRATS M. Effect of burial history on the subsurface horizontal stresses of formations having different material properties[C]. SPE 9017-PA, 1981. doi:10.2118/9017-PA [38] QIU Kaibin, CHENG Ning, KE Xiangui, et al. 3D reservoir geomechanics workflow and its application to a tight gas reservoir in Western China[C]. IPTC-17115-MS, 2013. doi:10.2523/IPTC-17115-MS [39] ZHANG Tao, FANG Xiaomin, SONG Chunhui, et al. Cenozoic tectonic deformation and uplift of the South Tianshan:Implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa Depression[J]. Tectonophysics, 2014, 628:172-187. doi:10.1016/j.tecto. 2014.04.044 [40] ZHANG Fuxiang, ZHANG Hui. Geomechanical mechanism of hydraulic fracturing and fracability of natural fractured tight sandstone reservoir in Keshen Gas Field in Tarim Basin[C]. SPE 177457-MS, 2015. doi:10.2118/177457-MS [41] PLUMB R, EDWARDS S, PIDCOCK G, et al. The mechanical earth model concept and its application to high-risk well construction projects[C]. SPE 59128-MS, 2000. doi:10.2523/59128-MS [42] 王鹏昊,汤良杰,邱海峻,等. 塔里木盆地西北地区岩石力学格架及其地质意义[J]. 吉林大学学报(地球科学版),2012,42(S3):101-110. doi:10.13278/j.cnki.jjuese.2012.s3.036 WANG Penghao, TANG Liangjie, QIU Haijun, et al. Rock mechanics framework and its geological implication in Northwest Tarim Basin, China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(S3):101-110. doi:10.13278/j.cnki.jjuese.2012.s3.036 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||