[1] 孙豆豆,高冬霞. 油气井钻井工程项目风险综合评价方法研究[J]. 石化技术, 2016, 23(11):245-246. doi:10.3969/j.issn.1006-0235.2016.11.181 SUN Doudou, GAO Dongxia. Research on comprehensive risk assessment method of oil and gas well drilling engineering project[J]. Petrochemical Industry Technology, 2016, 23(11):245-246. doi:10.3969/j.issn.1006-0235.2016.11.181 [2] 杨杰,李朝辉. 油气钻井事故预防与安全对策研究[J]. 石油化工安全环保技术, 2015(3):33-34. doi:10.3969/j.issn.1673-8659.2015.03.013 YANG Jie, LI Zhaohui. Oil and gas drilling accident prevention and safety countermeasures[J]. Petrochemical Safety and Environmental Protection Technology, 2015(3):33-34. doi:10.3969/j.issn.1673-8659.2015.03.013 [3] 张曦元,樊建春. 海上钻井职业伤害事故统计分析及预防对策[J]. 中国安全生产科学技术, 2012, 8(12):169-173. ZHANG Xiyuan, FAN Jianchun. Statistics analysis and prevention countermeasures of occupational accidents in offshore drilling[J]. Journal of Safety Science and Technology, 2012, 8(12):169-173. [4] ZHAO Ying, SUN Ting, YANG Jin, et al. Combining drilling big data and machine learning method to improve the timeliness of drilling[C]. SPE 194111-MS, 2019. doi:10.2118/194111-MS [5] 孙挺,赵颖,杨进,等. 基于支持向量机的钻井工况实时智能识别方法[J]. 石油钻探技术, 2019, 47(5):28-33. doi:10.11911/syztjs.2019033 SUN Ting, ZHAO Ying, YANG Jin, et al. Real-time intelligent identification method under drilling conditions based on support vector machine[J]. Petroleum Drilling Techniques, 2019, 47(5):28-33. doi:10.11911/syztjs.2019033 [6] 刘广宇. 钻井提速技术研究及在海洋钻井应用效果分析[D]. 大庆:东北石油大学, 2017. LIU Guangyu. Research on penetration rate accelerating and analysis of its application on offshore drilling[D]. Daqing:Northeast Petroleum University, 2017. [7] 赵毅. 神经网络钻井参数优化[D]. 西安:西安石油大学, 2018. ZHAO Yi. Neural network parameter optimization[D]. Xi'an:Xi'an Shiyou University, 2018. [8] 石林,汪海阁,纪国栋. 中石油钻井工程技术现状、挑战及发展趋势[J]. 天然气工业, 2013, 33(10):1-10. doi:10.3787/j.issn.1000-0976.2013.10.001 SHI Lin, WANG Haige, JI Guodong. Current situation, challenges and developing trend of CNPC's oil & gas drilling[J]. Natural Gas Industry, 2013, 33(10):1-10. doi:10.3787/j.issn.1000-0976.2013.10.001 [9] 沈忠厚,黄洪春,高德利. 世界钻井技术新进展及发展趋势分析[J]. 中国石油大学学报(自然科学版), 2009, 33(4):64-70. doi:10.3321/j.issn:1673-5005.2009.04.012 SHEN Zhonghou, HUANG Hongchun, GAO Deli. Analysis on new development and development trend of worldwide drilling technology[J]. Journal of China University of Petroleum, 2009, 33(4):64-70. doi:10.3321/j.issn:1673-5005.2009.04.012 [10] 刘春艳,凌建春,寇林元,等. GA-BP神经网络与BP 神经网络性能比较[J]. 中国卫生统计, 2013, 30(2):173-176, 181. LIU Chunyan, LING Jianchun, KOU Linyuan, et al. Performance comparison between GA-BP neural network and BP neural network[J]. Chinese Journal of Health Statistics, 2013, 30(2):173-176, 181. [11] 鲁刚,李伯全. 基于VB的遗传算法软件实现及其应用[J]. 计算机与现代化, 2002(7):1-3. doi:10.3969/j.issn.1006-2475.2002.07.001 LU Gang, LI Boquan. Genetic algorithm's programming realization based on VB and its application[J]. Computer and Modernization, 2002(7):1-3. doi:10.3969/j.issn.1006-2475.2002.07.001 [12] YANG Jin, SUN Ting, ZHAO Ying, et al. Advanced realtime gas kick detection using machine learning technology[C]. Proceedings of the International Offshore and Polar Engineering Conference, Honolulu, 2019. [13] 窦鹏伟,王珍,佘侃侃,等. 基于改进BP神经网络的中药水提液陶瓷膜污染预测研究[J]. 中国中医药信息杂志,2017,24(4):92-96. doi:10.3969/j.issn.1005-5304.2017.04.023 DOU Pengwei, WANG Zhen, SHE Kankan, et al. Study on forecasting ceramic membrane fouling in TCM extracts based on improved BP neural network[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2017, 24(4):92-96. doi:10.3969/j.issn.1005-5304.2017.04.023 [14] 刘胜娃,孙俊明,高翔,等. 基于人工神经网络的钻井机械钻速预测模型的分析与建立[J]. 计算机科学, 2019, 46(z1):605-608. LIU Shengwa, SUN Junming, GAO Xiang, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(z1):605-608. [15] 胡金滨,唐旭清. 人工神经网络的BP算法及其应用[J]. 信息技术, 2004, 28(4):1-4. doi:10.3969/j.issn.1009-2552.2004.04.001 HU Jinbin, TANG Xuqing. BP algorithm and its application in artificial neural network[J]. Information Technology, 2004, 28(4):1-4. doi:10.3969/j.issn.1009-2552.2004.04.001 [16] 付娜. 钻井过程中工况异常监测与预警系统研究与开发[D]. 青岛:中国石油大学(华东), 2014. FU Na. Research and development of monitoring and forecasting system for drilling engineering accidents[D]. Qingdao:China University of Petroleum, 2014. [17] 邵孟良,于颖敏. 基于遗传算法的BP神经网络气液两相流持液率预测模型优化[J]. 西安石油大学学报(自然科学版),2019,34(6):44-49. doi:10.3969/j.issn.1673-064X.2019.06.008 SHAO Mengliang, YU Yingmin. Optimization of gasliquid two-phase flow liquid hold-up prediction model with bp neural network based on genetic algorithm[J]. Journal of Xi'an Shiyou University (Natural Science), 2019, 34(6):44-49. doi:10.3969/j.issn.1673-064X.2019.06.008 [18] 马永,贾俊芳. 遗传算法研究综述[J]. 山西大同大学学报(自然科学版), 2007, 23(6):11-13. doi:10.3969/j.issn.1674-0874.2007.03.005 MA Yong, JIA Junfang. Review of research on genetic algorithm[J]. Journal of Shanxi Datong University (Natural Science), 2007, 23(6):11-13. doi:10.3969/j.issn.1674-0874.2007.03.005 [19] 葛继科,邱玉辉,吴春明,等. 遗传算法研究综述[J]. 计算机应用研究, 2008, 25(10):2911-2916. doi:10.3969/j.issn.1001-3695.2008.10.008 GE Jike, QIU Yuhui, WU Chunming, et al. Summary of genetic algorithms research[J]. Application Research of Computers, 2008, 25(10):2911-2916. doi:10.3969/j.issn.1001-3695.2008.10.008 [20] 赵颖,孙挺,杨进,等. 基于极限学习机的海上钻井机械钻速监测及实时优化[J]. 中国海上油气, 2019, 31(6):138-142. ZHAO Ying, SUN Ting, YANG Jin, et al. Extreme learning machine-based offshore drilling ROP monitoring and real-time optimization[J]. China Offshore Oil and Gas, 2019, 31(6):138-142. [21] LASHARI S, TAKBIRI-BORUJENI A, FATHI E, et al. Drilling performance monitoring and optimization:A data-driven approach[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4):2747-2756. doi:10.1007/s13202-019-0657-2 |