[1] 钟仪华. 特高含水期油田开发规划动态预测方法研究[D]. 成都:西南石油大学, 2008. ZHONG Yihua. The study of dynamic prediction methods for oilfield development programming in extra-high watercut stage[D]. Chengdu:Southwest Petroleum University, 2008. [2] ZHONG Yihua, LI Lina, WANG Yu. The study of model selection method on intelligent prediction system and its applications[C]. International Conference on Computational & Information Sciences, 2011. doi:10.1109/ICCIS. 2011.301 [3] ZHONG Yihua, ZHU Mingxia, ZHANG Zhiyin. An intelligent prediction model for oilfield production based on fuzzy expert system[J]. Advances in Intelligent and Soft Computing, 2012, 147:475-484. doi:10.1007/978-3-642-28592-9_50 [4] 张志银. 油田开发指标系统的智能预测研究[D]. 成都:西南石油大学, 2012. ZHANG Zhiyin. The research of intelligent prediction on oilfield development index system[D]. Chengdu:Southwest Petroleum University, 2012. [5] 廖昱芯. 基于智能预测系统的知识挖掘及应用研究[D]. 成都:西南石油大学, 2013. LIAO Yuxin. The research of knowledge mining based on intelligent prediction system and its application[D]. Chengdu:Southwest Petroleum University, 2013. [6] 李丽娜. 基于智能预测的模糊预测控制方法及应用研究[D]. 成都:西南石油大学, 2013. LI Lina. The research of fuzzy predictive control method based on intelligent prediction and its application[D]. Chengdu:Southwest Petroleum University, 2013. [7] ZHONG Yihua, WANG Dan, YUE Yongpeng, et al. Intelligent prediction system of oilfield development index[C]. Proceedings of the Asia-Pacific Computer Science and Application Conference, 2014:229-233. doi:10.1201/b18508-40 [8] 王丹. 基于Agent的油田开发指标的智能预测系统研究[D]. 成都:西南石油大学, 2015. WANG Dan. The research on intelligent prediction system of oilfield development index based on Agent[D]. Chengdu:Southwest Petroleum University, 2015. [9] ZHONG Yihua, LÜ Xiaodie, BAO Min, et al. Design for intelligent prediction system of oilfield development index based on pattern recognition[J]. Filomat, 2018, 32(5):1757-1764. doi:10.2298/FIL1805757Z [10] YANG Qingjun, ZHANG Shulin, FEI Qi. Integrating neural network and numerical simulation for production performance prediction of low permeability reservoir[J]. Petroleum Science and Technology, 2005, 23(5-6):579-590. doi:10.1081/LFT-200032851 [11] AI-JASMI A K, GOEL H K, NASR H, et al. Short-term production prediction in real time using intelligent techniques[C]. SPE 164813-MS, 2013. [12] ZHONG Yihua, ZHAO Lei, LIU Zhibin, et al. Using a support vector machine method to predict the development indices of very high water cut oilfields[J]. Petroleum Science, 2010, 7(3):379-384. doi:10.1007/s12182-010-0081-1 [13] 朱秀莉,李龙,李盼池. 基于T-S推理网络的油田开发指标预测方法[J]. 计算机应用研究, 2011, 28(8):2991-2993. doi:10.3969/j.issn.1001-3695.2011.08.052 ZHU Xiuli, LI Long, LI Panchi. Forecasting methods of oil field development indexes based on T-S reasoning networks[J]. Application Research of Computers, 2011, 28(8):2991-2993. doi:10.3969/j.issn.1001-3695.2011.08.052 [14] 张巧翠. 基于模糊计算的油田开发指标预测模型及应用研究[D]. 大庆:东北石油大学, 2011. ZHANG Qiaocui. Research on model and application of oilfield development index prediction based on fuzzy computation[D]. Daqing:Northeast Petroleum University, 2011. [15] 张宇航. 基于油藏建模成果的油田开发指标预测及状态评估方法[D]. 大庆:东北石油大学, 2016. ZHANG Yuhang. The method of oilfield development index prediction and condition assessment based on the reservoir modeling results[D]. Daqing:Northeast Petroleum University, 2016. [16] SRIDEVI S, RAJARAM S, SWADHIKAR C. An intelligent prediction system for time series data using periodic pattern mining in temporal databases[C]. Proceedings of the First International Conference on Intelligent Interactive Technologies and Multimedia, 2010:163-171. doi:10.1145/1963564.1963592 [17] ROSLI N S, IBRAHIM R, ISMAIL I. Intelligent prediction system for gas metering system using particle swarm optimization in training neural network[J]. Procedia Computer Science, 2017, 105:165-169. doi:10.1016/j.procs. 2017.01.197 [18] HAMED Z S, JAMES P K, S A. Developing an intelligent expert system for stream flow prediction, integrated in a dynamic decision support system for managing multiple reservoirs:A case study[J]. Expert Systems with Applications, 2017, 83:145-163. doi:10.1016/j.eswa.2017.04.039 [19] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. doi:10.1038/nature14539 [20] 谷建伟,周梅,李志涛,等. 基于数据挖掘的长短期记忆网络模型油井产量预测方法[J]. 特种油气藏,2019,26(2):77-81. doi:10.3969/j.issn.1006-6535.2019.02.013 GU Jianwei, ZHOU Mei, LI Zhitao, et al. Oil well production forecast with long-short term memory network model based on data mining[J]. Special Oil and Gas Reservoir, 2019, 26(2):77-81. doi:10.3969/j.issn.1006-6535.2019.02.013 [21] 邹晶. 基于深度学习的实体与关系联合提取方法研究[D]. 成都:电子科技大学, 2019. ZOU Jing. Research on entity and relationship joint extraction method based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2019. [22] 李元,冯成成. 基于一维卷积神经网络深度学习的工业过程故障检测[J]. 测控技术, 2019, 38(9):36-40. doi:10.19708/j.ckjs.2019.09.007 LI Yuan, FENG Chengcheng. Fault detection of industrial process based on deep learning of one-dimensional convolutional neural network[J]. Measurement & Control Technology, 2019, 38(9):36-40. doi:10.19708/j.ckjs.2019.09.007 [23] 林锦发,程良伦,应稼田. 基于一维卷积神经网络的多特征社交网络流行度预测研究[J]. 现代计算机, 2019, 643(7):3-9. doi:10.3969/j.issn.1007-1423.2019.07.001 LIN Jinfa, CHENG Lianglun, YING Jiatian. Research on popularity prediction of multi-feature social networks based on one-dimensional convolutional neural networks[J]. Modern Computer, 2019, 643(7):3-9. doi:10.3969/j.issn.1007-1423.2019.07.001 [24] 李道全,王雪,于波,等. 基于一维卷积神经网络的网络流量分类方法[J]. 计算机工程与应用, 2020, 56(3):94-99. doi:10.3778/j.issn.1002-8331.1905-0139 LI Daoquan, WANG Xue, YU Bo, et al. Network traffic classification method based on one-dimensional convolutional neural network[J]. Computer Engineering and Applications, 2020, 56(3):94-99. doi:10.3778/j.issn.1002-8331.1905-0139 [25] 宋辉,陈伟,李谋杰,等. 基于卷积门控循环单元网络的储层参数预测方法[J]. 油气地质与采收率, 2019, 26(5):73-78. doi:10.13673/j.cnki.cn37-1359/te.2019.05.009 SONG Hui, CHEN Wei, LI Moujie, et al. A method to predict reservoir parameters based on convolutional neural network-gated recurrent unit(CNN-GRU)[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5):73-78. doi:10.13673/j.cnki.cn37-1359/te.2019.05.009 [26] 李大中,颖宇,王超. 基于卷积循环神经网络深度学习的短期风速预测[J]. 电力科学与工程, 2019, 35(8):1-6. doi:10.3969/j.ISSN.1672-0792.2019.08.001 LI Dazhong, YING Yu, WANG Chao. Short-term wind speed prediction based on convolutional cyclic neural network and deep learning[J]. Electric Power Science and Engineering, 2019, 35(8):1-6. doi:10.3969/j.ISSN.1672-0792.2019.08.001 [27] 李东东,王浩,杨帆,等. 基于一维卷积神经网络和Soft-Max分类器的风电机组行星齿轮箱故障检测[J]. 电机与控制应用, 2018, 45(6):80-87, 108. LI Dongdong, WANG Hao, YANG Fan, et al. Fault detection of wind turbine planetary gear box using 1D convolutional neural networks and soft-max classifier[J]. Electric Machines & Control Application, 2018, 45(6):80-87, 108. |