[1] 郭杰,肖笛,罗冰,等.川东地区中二叠世茅口组台槽分异演化及常规—非常规天然气勘探有利区新发现[J]. 石油与天然气地质, 2025, 46(1):192-210. doi: 10.11743/ogg20250114 GUO Jie, XIAO Di, LUO Bing, et al. Platform-trough differential evolution and recent findings on conventional and unconventional natural gas play fairways in the Middle Permian Maokou Formation, eastern Sichuan Basin[J]. Oil & Gas Geology, 2025, 46(1): 192-210. doi: 10.11743/ogg20250114 [2] LAI Jin, WANG Guiwen, CHAI Yu, et al. Depositional and diagenetic controls on pore structure of tight gas sandstone reservoirs: Evidence from lower cretaceous bashijiqike formation in Kelasu thrust belts, Kuqa Depression in Tarim Basin of west China[J]. Resource Geology, 2015, 65(2): 55-75. doi: 10.1111/rge.12061 [3] 朱如凯,吴松涛,苏玲,等. 中国致密储层孔隙结构表征需注意的问题及未来发展方向[J]. 石油学报, 2016, 37(11):1323-1336. doi: 10.7623/syxb201611001 ZHU Rukai, WU Songtao, SU Ling, et al. Problems and future works of porous texture characterization of tight reservoirs in China[J]. Acta Petrolei Sinica, 2016, 37(11): 1323-1336. doi: 10.7623/syxb201611001 [4] WU Yuqi, TAHMASEBI P, LIN Chengyan, et al. A comprehensive study on geometric, topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray CT experiments[J]. Marine & Petroleum Geology, 2019, 103: 12-28. doi: 10.1016/j.marpetgeo.2019.02.003 [5] REZAEI A, SIDDIQUI F, DINDORUK B, et al. A review on factors influencing the rock mechanics of the gas bearing formations[J]. Journal of Natural Gas Science and Engineering, 2020, 80: 103348. doi: 10.1016/j.jngse.2020.103348 [6] 彭军,韩浩东,夏青松,等. 深埋藏致密砂岩储层微观孔隙结构的分形表征及成因机理——以塔里木盆地顺托果勒地区柯坪塔格组为例[J]. 石油学报, 2018, 39(7):775-791. doi: 10.7623/syxb201807005 PENG Jun, HAN Haodong, XIA Qingsong, et al. Fractal characterization and genetic mechanism of micropore structure in deeply buried tight sandstone reservoirs: A case study of Kalpintag Formation in Shuntuoguole Area, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(7): 775-791. doi: 10.7623/syxb201807005 [7] YANG Yubin, XIAO Wenlian, BERNABE Y, et al. Effect of pore structure and injection pressure on waterflooding in tight oil sandstone cores using NMR technique and pore network simulation[J]. Journal of Petroleum Science and Engineering, 2022, 217: 110-119. doi: 10.1016/j.petrol.2022.110886 [8] LIU Guangfeng, XIE Shuaiting, TIAN Wei, et al. Effect of pore-throat structure on gas-water seepage behaviour in a tight sandstone gas reservoir[J]. Fuel, 2022, 3(1): 12-19. doi: 10.1016/j.fuel.2021.121901 [9] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8 段、山1 段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6):1540-1551. doi: 10.13278/j.cnki.jjuese.20180232 JI Wei. Gas water relative flow of tight sandstone gas reservoirs and its influencing factors: Case study of member 8 of permian Xiashihezi Formation and member 1 of permian Shanxi Formation in Shaan Well 234-235 Area of Sulige Gas-field in Ordos Basin[J]. Journal of Jilin University (Earth Scicnce Edition), 2019, 49(6): 1540-1551. doi: 10.13278/j.cnki.jjuese.20180232 [10] 葛东升,蔡振华,刘灵童,等. 鄂尔多斯盆地东缘临兴地区太原组太2 段致密砂岩储层孔隙结构及渗流特征分析[J]. 非常规油气, 2020, 7(6):11-17. doi: 10.3969/j.issn.2095-8471.2020.06.003 GE Dongsheng, CAI Zhenhua, LIU Lingtong, et al. Analysis on microscopic pore structure and seepage characteristics of tight sandstone reservoir of Tai 2 Section of Taiyuan Formation in Linxing Area, Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(6): 11-17. doi: 10.3969/j.issn.2095-8471.2020.06.003 [11] YIN Xiangdong, SHU Jiang, LI Yanlu, et al. Impact of pore structure and clay content on the water-gas relative permeability curve within tight sandstones: A case study from the LS Block, eastern Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 8(1): 103-124. [12] 杨玉斌,肖文联,韩建,等. 丹凤场气田致密砂岩气水渗流特征及影响因素[J]. 油气藏评价与开发, 2022, 12(2):356-364. doi: 10.13809/j.cnki.cn321825/te.2022.02.011 YANG Yubin, XIAO Wenlian, HAN Jian, et al. Gas-water flow characteristics and influencing factors of tight sandstone in Danfengchang Gas Field[J]. Reservoir Evaluation and Development, 2022, 12(2): 356-364. doi: 10.13809/j.cnki.cn32-1825/te.2022.02.011 [13] 中华人民共和国国家质量监督检验检疫总局. 致密砂岩气地质评价方法: GB/T 30501-2014[S]. 北京:中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Geological evaluating methods for tight sandstone gas: GB/T 30501-2014[S]. Beijing: Standards Press of China, 2014. [14] CAI L, GUO X, ZHANG X, et al. Pore-throat structures of the Permian Longtan Formation tight sandstones in the South Yellow Sea Basin, China: A case study from borehole CSDP-2[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106733. doi: 10.1016/j.petrol.2019.106733 [15] 李爱芬,任晓霞,王桂娟,等. 核磁共振研究致密砂岩孔隙结构的方法及应用[J]. 中国石油大学学报(自然科学版), 2015, 39(6):92-98. doi: 10.3969/j.issn.16735005.2015.06.012 LI Aifen, REN Xiaoxia, WANG Guijuan, et al. Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(6): 92-98. doi: 10.3969/j.issn.1673-5005.2015.06.012 [16] 中华人民共和国国家质量监督检验检疫总局. 气体吸附BET法测定固态物质: GB/T 19587-2017[S]. 北京:中国标准出版社, 2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of the specific surface area of solids by gas adsorption using the BET method: GB/T 19587-2017[S]. Beijing: Standards Press of China, 2017. [17] 韩进. 鄂尔多斯盆地王盘山区延长组储层微观孔隙结构及渗流特征表征[D]. 西安:西北大学, 2020. HAN Jin. Microscopic characteristics of pore structure and seepage of Yanchang Formation in Wangpanshan Area in Ordos Basin[D]. Xi'an: Northwest University, 2020. [18] 中华人民共和国国家质量监督检验检疫总局. 岩石中两相流体相对渗透率测定方法: GB/T 28912-2012[S]. 北京:中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for two phase relative permeability in rock: GB/T 28912-2012[S]. Beijing: Standards Press of China, 2012. [19] SU Haibo, ZHANG Shiming, SUN Yeheng, et al. A comprehensive model for oilwater relative permeabilities in low-permeability reservoirs by fractal theory[J]. Fractals, 2020, 28(3): 2050055. [20] 唐洪明,刘贤,陈洋,等. 不同构造单元页岩孔隙结构差异及其油气地质意义——以四川盆地泸州地区深层页岩为例[J]. 天然气工业, 2024, 44(5):16-28. doi: 10.3787/j.issn.1000-0976.2024.05.002 TANG Hongming, LIU Xian, CHEN Yang, et al. Pore structure difference of shale in different structural units and its petroleum geological implications: A case study on deep shale in the Luzhou Area, southern Sichuan Basin[J]. Natural Gas Industry, 2024, 44(5): 16-28. doi: 10.3787/j.issn.1000-0976.2024.05.002 [21] 汪敏,杨桃,唐洪明,等. 迁移深度神经网络的页岩总孔隙度预测[J]. 西南石油大学学报(自然科学版), 2023, 45(6):69-79. doi: 10.11885/j.issn.1674-5086.2021.06.11.03 WANG Min, YANG Tao, TANG Hongming, et al. Prediction for total porosity of shale based on transfer deep neural network[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 69-79. doi: 10.11885/j.issn.1674-5086.2021.06.11.03 [22] 张瑞. 致密气砂岩气水相渗特征研究——以苏东南地区盒8 段储层为例[D]. 西安:西北大学, 2014. ZHANG Rui. Detailed study on gas-water relative flow of tight gas sandstone: A case from He 8 Formation of southeastern Sulige Area abstract[D]. Xi'an: Northwest University, 2014. [23] 任颖惠,吴珂,何康宁,等. 核磁共振技术在研究超低渗致密油储层可动流体中的应用——以鄂尔多斯盆地陇东地区延长组为例[J]. 矿物岩石, 2017, 37(1):103-110. doi: 10.19719/j.cnki.1001-6872.2017.01.012 REN Yinghui, WU Ke, HE Kangning, et al. Application of NMR technique to movable fluid of ultra-low permeabilityand tight reservoir: A case study on the Yanchang formation in Longdong Area, Ordos Basin[J]. Mineralogy and Petrology, 2017, 37(1): 103-110. doi: 10.19719/j.cnki.1001-6872.2017.01.012 [24] 李闽,王浩,陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1):140-149. doi: 10.3969/j.issn.16738926.2018.01.014 LI Min, WANG Hao, CHEN Meng. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs: A case study of Lucaogou Formation in Jimsar Sag, NW China[J]. Lithologic Reservoirs, 2018,30(1): 140-149. doi: 10.3969/j.issn.1673-8926.2018.01.014 [25] Al-JAWAD S N, SALEH A H. Flow units and rock type for reservoir characterization in carbonate reservoir: Case study, south of Iraq[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(1): 1-20. doi: 10.1007/s13202-019-0736-4 [26] YANG Bo, QU Honghun, PU Renhai, et al. Controlling effects of tight reservoir micropore structures on seepage ability: A case study of the upper Paleozoic of the Eastern Ordos Basin, China[J]. Acta Geol Sin, 2020, 94(2): 322-336. [27] 钟红利,张凤奇,赵振宇,等. 致密砂岩储层微观孔喉分布特征及对可动流体的控制作用[J]. 石油实验地质, 2021, 43(1):77-85. doi: 10.11781/sysydz202101077 ZHONG Hongli, ZHANG Fengqi, ZHAO Zhenyu, et al. Micro-scale pore-throat distributions in tight sandstone reservoirs and its constrain to movable fluid[J]. Petroleum Geology & Experiment, 2021, 43(1): 77-85. doi: 10.11781/sysydz202101077 [28] 唐洪俊,崔凯华. 油层物理[M]. 北京:石油工业出版社, 2014. TANG Hongjun, CUI Kaihua. Petrophysics[M]. Beijing: Petroleum Industry Press, 2014. [29] 韩永林,刘军锋,余永进,等. 致密油藏储层驱替特征及开发效果——以鄂尔多斯盆地上里塬地区延长组长 7油层组为例[J]. 石油与天然气地质, 2014, 35(2):207-211. doi: 10.11743/ogg20140205 HAN Yonglin, LIU Junfeng, YU Yongjin, et al. Displacement characteristics and development effect of tight oil reservoir: A case from Chang 7 oil layer of the Yanchang Formation in Shangliyuan Area, Ordos Basin[J]. Oil & Gas Geology, 2014, 35(2): 207-211. doi: 10.11743/ogg20140205 |