西南石油大学学报(自然科学版) ›› 2018, Vol. 40 ›› Issue (6): 85-105.DOI: 10.11885/j.issn.1674-5086.2018.07.18.03
Previous Articles Next Articles
SONG Rui1,2, WANG Yao1, LIU Jianjun1,2
Received:
2018-07-18
Online:
2018-12-01
Published:
2018-12-01
CLC Number:
SONG Rui, WANG Yao, LIU Jianjun. Microscopic Pore Structure Characterization and Fluids Transport Visualization of Reservoir Rock[J]. 西南石油大学学报(自然科学版), 2018, 40(6): 85-105.
[1] LAI Jin, WANG Guiwen, WANG Ziyuan, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177:436-457. doi:10.1016/j.earscirev.2017.12.003 [2] 宋艳波. 低渗气藏岩石变形渗流机理及应用研究[D]. 北京:中国地质大学, 2005. SONG Yanbo. A study of the percolation mechanisms with rock deformation and the application for low permeability gas reservoir[D]. Beijing:China University of Geoscience, 2005. [3] 司马立强,王超,王亮,等. 致密砂岩储层孔隙结构对渗流特征的影响——以四川盆地川西地区上侏罗统蓬莱镇组储层为例[J]. 天然气工业, 2016, 36(12):18-25. doi:10.3787/j.issn.1000-0976.2016.12.003 SIMA Liqiang, WANG Chao, WANG Liang, et al. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs:A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western Sichuan Basin[J]. Natural Gas Industry, 2016, 36(12):18-25. doi:10.3787/j.issn.1000-0976.2016.12.003 [4] 熊金玉,李思田,唐玄,等. 湖相碳酸盐岩致密储层有机质赋存状态与孔隙演化微观机理[J]. 石油与天然气地质, 2015, 36(5):756-765. doi:10.11743/ogg20150506 XIONG Jinyu, LI Sitian, TANG Xuan, et al. Organic matter occurrence and microscopic mechanism of pore formation in the lacustrine tight carbonate reservoirs[J]. Oil & Gas Geology, 2015, 36(5):756-765. doi:10.11743/ogg20150506 [5] 朱洪林. 低渗砂岩储层孔隙结构表征及应用研究[D]. 成都:西南石油大学, 2014. ZHU Honglin. Pore structure characterization of low permeability sandstone reservoir and application[D]. Chengdu:Southwest Petroleum University, 2014. [6] 郝乐伟,王琪,唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013, 25(5):123-128. doi:10.3969/j.issn.1673-8926.2013.05.023 HAO Lewei, WANG Qi, TANG Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013, 25(5):123-128. doi:10.3969/j.issn.16738926.2013.05.023 [7] 杨正明,姜汉桥,李树铁,等. 低渗气藏微观孔隙结构特征参数研究——以苏里格和迪那低渗气藏为例[J]. 石油天然气学报,2007,29(6):108-119. doi:10.3969/j.issn.1000-9752.2007.06.026 YANG Zhengming, JIANG Hanqiao, LI Shutie, et al. Characteristic parameters of microscopic pore structures of low permeability gas reservoirs——By using sulige and dina low permeability gas reservoirs for example[J]. Journal of Oil and Gas Technology, 2007, 29(6):108-119. doi:10.3969/j.issn.1000-9752.2007.06.026 [8] ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy & Geochemistry, 2015, 80(1):61-164. doi:10.2138/rmg.2015.80.04 [9] 于俊波,郭殿军,王新强. 基于恒速压汞技术的低渗透储层物性特征[J]. 大庆石油学院学报, 2006, 30(2):22-25. doi:10.3969/j.issn.2095-4107.2006.02.007 YU Junbo, GUO Dianjun, WANG Xinqiang. Study of microscopic behaviors of low permeable reservoir through constant velocity mercury injection technique[J]. Journal of Daqing Petroleum Institute, 2006, 30(2):22-25. doi:10.3969/j.issn.2095-4107.2006.02.007 [10] 杨峰,宁正福,孔德涛,等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3):450-455. YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3):450-455. [11] 崔景伟,邹才能,朱如凯,等. 页岩孔隙研究新进展[J]. 地球科学进展, 2012, 27(12):1319-1325. CUI Jingwei, ZOU Caineng, ZHU Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Sciences, 2012, 27(12):1319-1325. [12] 刘凡,姜汉桥,张贤松,等. 基于核磁共振的水平井开发孔隙动用机理研究[J]. 西南石油大学学报(自然科学版), 2013, 35(6):99-103. doi:10.3863/j.issn.16745086.2013.06.013 LIU Fan, JIANG Hanqiao, ZHANG Xiansong, et al. Study on the mechanism of horizontal well development based on NMR[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6):99-103. doi:10.3863/j.issn.1674-5086.2013.06.013 [13] 陈杰,刘向君,成竹,等. 利用电阻率测井资料研究砂岩孔隙结构特征[J]. 西南石油大学学报(自然科学版), 2005, 27(6):5-7. doi:10.3863/j.issn.1674-5086.2005.06.002 CHENG Jie, LIU Xiangjun, CHENG Zhu, et al. Studying the pore structure of sandstone by resistivity logging[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2005, 27(6):5-7. doi:10.3863/j.issn.1674-5086.2005.06.002 [14] 刘向君,周改英,陈杰,等. 基于岩石电阻率参数研究致密砂岩孔隙结构[J]. 天然气工业, 2007, 27(1):41-43. doi:10.3321/j.issn:1000-0976.2007.01.012 LIU Xiangjun, ZHOU Gaiying, CHEN Jie, et al. Study on pore structure of tight sand based on resistivity[J]. Natural Gas Industry, 2007, 27(1):41-43. doi:10.3321/j.issn:1000-0976.2007.01.012 [15] MCCREESH C A, EHRLICH R, CRABTREE S J, et al. Petrography and reservoir physics Ⅱ:Relating thin section porosity to capillary pressure, the association between pore types and throat size[J]. AAPG Bulletin, 1991, 75:1563-1578. doi:10.1016/0148-9062(92)93814-Z [16] 于丽芳,杨志军,周永章,等. 扫描电镜和环境扫描电镜在地学领域的应用综述[J]. 中山大学研究生学刊(自然科学、医学版), 2008, 29(1):54-61. YU Lifang, YANG Zhijun, ZHOU Yongzhang, et al. The application summary of scanning electron microscope (SEM) and environment scanning electron microscope (ESEM) in geoscience[J]. Journal of the Graduates Sun Yatsen University (Natural Science, Medicine), 2008, 29(1):54-61. [17] LEBEDEVA E, SENDEN T J, KNACKSTEDT M, et al. Improved oil recovery from tensleep sandstone-studies of brine-rock interactions by micro-ct and AFM[C]//IOR 2009-15th European Symposium on Improved Oil Recovery, 2009. doi:10.3997/2214-4609.201404879 [18] JAVADPOUR F. Nanopores and apparent permeability of gas flow in mud rocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8):16-21. doi:10.2118/09-08-16-DA [19] 宋睿,刘建军,李光. 基于CT图像及孔隙网格的岩芯孔渗参数研究[J]. 西南石油大学学报(自然科学版), 2015, 37(3):138-145. doi:10.11885/j.issn.16745086.2015.04.03.03 SONG Rui, LIU Jianjun, LI Guang. Researches on the pore permeability of core sample based on 3D micro-CT images and pore-scale structured element models[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(3):138-145. doi:10.11885/j.issn.16745086.2015.04.03.03 [20] 王冬欣. 基于Micro-CT图像的数字岩芯孔隙级网络建模研究[D]. 吉林:吉林大学, 2015. WANG Dongxin. The research of digital core network extraction based on micro-CT images[D]. Jilin:Jilin University, 2015. [21] WHITAKER S. Flow in porous media I:A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986(1):3-25. doi:10.1007/BF01036523 [22] 黄延章,于大森. 微观渗流实验力学及其应用[M]. 北京:石油工业出版社, 2001. HUANG Yanzhang, YU Dasen. Experimental mechanics and its application of microscopic seepage[M]. Beijing:Petroleum Industry Press, 2011. [23] 秦积舜,李爱芬. 油层物理学[M]. 青岛:中国石油大学出版社, 2003. QIN Jishun, LI Aifen. Petrophysics[M]. Qingdao:China Petroleum University Press, 2003. [24] EDITION S. Recommended practices for core analysis[M]. Washington:API Publishing Services, 2010. [25] 熊钰,王帅,耿站立,等. 弱胶结高渗疏松砂岩人造岩芯制作新技术[J]. 地球物理学进展, 2015, 30(3):1474-1479. doi:10.6038/pg20150364 XIONG Yu, WANG Shuai, GENG Zhanli, et al. A new technology of making weakly cemented and hypertonic artificial cores of unconsolidated sandstone[J]. Progress in Geophysics, 2015, 30(3):1474-1479. doi:10.6038/pg20150364 [26] 姚军,孙海,李爱芬,等. 现代油气渗流力学体系及其发展趋势[J]. 中国科学:科学通报, 2018(6):425-451. doi:10.1360/N972017-00161 YAO Jun, SUN Hai, LI Aifen, et al. Modern system of multiphase flow in porous media and its development trend[J]. China Science Bulletin, 2018(6):425-451. doi:10.1360/N972017-00161 [27] 李爱芬,张东,姚军,等. 缝洞单元注水开发物理模拟[J]. 中国石油大学学报(自然科学版), 2012, 36(2):130-135. doi:10.3969/j.issn.1673-5005.2012.02.022 LI Aifen, ZHANG Dong, YAO Jun, et al. Physical simulation of water flooding in fractured-vuggy unit[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(2):130-135. doi:10.3969/j.issn.16735005.2012.02.022 [28] 于明旭,朱维耀,宋洪庆. 低渗透储层可视化微观渗流模型研制[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(12):1646-1650. doi:10.3969/j.issn.1008-0562.2013.12.014 YU Mingxu, ZHU Weiyao, SONG Hongqing. Development of microscopic visualization flow model of lowpermeability reservoir[J]. Journal of Liaoning Technical University (Natural Science Edition), 2013, 32(12):1646-1650. doi:10.3969/j.issn.1008-0562.2013.12.014 [29] CHATENEVER A, CALHOUN Jr J C. Visual examinations of fluid behavior in porous media. Part I[J]. Journal of Petroleum Technology, 1952, 4(6):149-156. doi:10.2118/135-G [30] KELLER A A, BLUNT M J, ROBERTS A P V. Micromodel observation of the role of oil layers in three-phase flow[J]. Transport in Porous Media, 1997, 26(3):277-297. doi:10.1023/A:1006589611884 [31] 朱义吾,徐安新,吕旭明,等. 长庆油田延安组油层光刻显微孔隙模型水驱油研究[J]. 石油学报, 1989, 10(3):40-47. doi:10.7623/syxb198903005 ZHU Yiwu, XU Anxin, LÜ Xuming, et al. Oil water displacement experiments in glass micromodels for Yanan reservoir rocks, Changqing Oil Field[J]. Acta Petrolei Sinica, 1989, 10(3):40-47. doi:10.7623/syxb198903005 [32] 孔令荣,曲志浩,万发宝,等. 砂岩微观孔隙模型两相驱替实验[J]. 石油勘探与开发, 1991(4):79-85. KONG Lingrong, QU Zhihao, WAN Fabao, et al. Experiments of two fluid phase displacement in sandstone micromodels[J]. Petroleum Exploration and Development, 1991(4):79-85. [33] 鄢友军,陈俊宇,郭静姝,等. 龙岗地区储层微观鲕粒模型气水两相渗流可视化实验及分析[J]. 天然气工业,2012,32(1):64-66. doi:10.3787/j.issn.1000-0976.2012.01.013 YAN Youjun, CHEN Junyu, GUO Jingshu, et al. A visualized experiment on gas-water two-phase seepage through reservoirs in the longgang gas field, sichuan basin[J]. Natural Gas Industry, 2012, 32(1):64-66. doi:10.3787/j.issn.1000-0976.2012.01.013 [34] 高源. 稠油油藏聚合物驱微观波及实验及数值模拟研究[D]. 成都:西南石油大学, 2017. GAO Yuan. Experiment study and numerical simulation of microscopic sweep of polymer flooding in heavy oil reservoir[D]. Chengdu:Southwest Petroleum University, 2017. [35] OSEIBONSU K, GRASSIA P, SHOKRI N. Investigation of foam flow in a 3D printed porous medium in the presence of oil[J]. Journal of Colloid and Interface Science, 2017, 490:850-858. doi:10.1016/j.jcis.2016.12.015 [36] 程毅翀. 基于低场核磁共振成像技术的岩芯内流体分布可视化研究[D]. 上海:上海大学, 2014. CHENG Yichong. Visualization study on fluid distribution in core based on low-field MRI method[D]. Shanghai:Shanghai University, 2014. [37] 王二利. 矩形微通道内流动沸腾流阻特性及可视化研究[D]. 广州:华南理工大学, 2013. WANG Erli. Flow resistance characteristics and visualization research on flow boiling rectangular microchannels[D]. Guangzhou:South China University of Technology, 2013. [38] 曹永娜. 利用CT扫描技术实现对岩芯微观驱替过程的研究[J]. 科学技术与工程, 2015, 15(6):64-68. doi:10.3969/j.issn.1671-1815.2015.06.013 CAO Yongna. Study of microscopic blooding process using CT scanning technique[J]. Science Technology and Engineering, 2015, 15(6):64-68. doi:10.3969/j.issn.1671-1815.2015.06.013 [39] BLUNT M J, BRANKO B, DONG Hu, et al. Pore-scale imaging and modelling[J]. Advances in Water Resources, 2013, 51(1):197-216. doi:10.1016/j.advwatres.2012.03.003 [40] LIU Z H, YANG Y F, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-energy Research, 2017, 1(3):171-181. [41] BULTREYS T, BOONE M A, BOONE M N, et al. Fast laboratory-based micro-computed tomography for porescale research:Illustrative experiments and perspectives on the future[J]. Advances in Water Resources, 2016, 95:341-351. doi:10.1016/j.advwatres.2015.05.012 [42] BULTREYS T, BOEVER W D, CNUDDE V. Imaging and image-based fluid transport modeling at the pore scale in geological materials:A practical introduction to the current state-of-the-art[J]. Earth-science Reviews, 2016, 155:93-128. doi:10.1016/j.earscirev.2016.02.001 [43] KHISHVAND M, AKBARABADI M, PIRI M. Microscale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples[J]. Advances in Water Resources, 2016, 94:379-399. doi:10.1016/j.advwatres.2016.05.012 [44] MENKE H P, BIJELJIC B, ANDREW M G, et al. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions[J]. Environmental Science & Technology, 2015, 49(7):4407-4414. doi:10.1021/es505789f [45] ARNS C, KNACKSTEDT M A. Virtual permeametry on microtomographic images[J]. Journal of Petroleum Science and Engineering, 2004, 45(1):41-46. doi:10.1016/j.petrol.2004.05.001 [46] DONG Hu, TOUATI M, BLUNT, et al. Pore network modeling:Analysis of pore size distribution of arabian core samples[C]. SPE 105156, 2007. doi:10.2118/105156-MS [47] BLUNT M J. Flow in porous media-pore-network models and multiphase flow[J]. Current Opinion in Colloid & Interface Science, 2001, 6(3):197-207. doi:10.1016/S13590294(01)00084-X [48] ARNS C H, KNACKSTEDT M A, PINCZEWSKI W V, et al. Computation of linear elastic properties from microtomographic images:Methodology and agreement between theory and experiment[J]. Geophysics, 2002, 67(5):1396-1405. doi:10.1190/1.1512785 [49] KEEHM Y, MUKERJI T, PRASAD M, et al. Permeability prediction from thin sections:3D reconstruction and lattice-boltzmann flow simulation[J]. Geophysics Research Letter, 2004, 31(310):1668. doi:10.1029/2003GL018761 [50] SAIN R. Numerical simulation of pore-scale heterogeneity and its effects on elastic, electrical, and transport properties[J]. Geophysics, 2012, 76(6):125. doi:10.1190/20111206-GEODIS.2 [51] 宋睿. 基于微尺度重建模型的岩石热—流—固耦合细观机理研究[D]. 成都:西南石油大学, 2016. SONG Rui. Research on micro thermal-hydro-mechanical coupling mechanism based on pore scale model of rock[D]. Chengdu:Southwest Petroleum University, 2016. [52] FATT I. Capillarity permeability-The network model of porous mediai. Capillary pressure characteristics[J]. Trans. AIME, 1956, 207(7):144-159. [53] FATT I. The network model of porous media Ⅲ. Dynamic properties of networks with tube radius distribution[J]. Trans. AIME, 1956, 207:164-181. [54] CHATZIS I, DULLIEN F A L. Modelling pore structure by 2D and 3D networks with application to sandstones[J]. Journal of Canadian Petroleum Technology, 1977, 16(1):97-108. doi:10.2118/77-01-09 [55] PURCELL W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2):39-48. doi:10.2118/949039-G [56] DULLIEN F A L. Single phase flow through porous media and pore structure[J]. The Chemical Engineering Journal, 1975, 10(1):1-34. doi:10.1016/0300-9467(75)88013-0 [57] SCHEIDEGGER A E. Physics of flow through porous media[M]. Toronto:University of Toronto, 1963. [58] 员美娟,郑伟. 单毛细管中卡森流体的分形分析[J]. 武汉科技大学学报(自然科学版), 2012, 35(3):229-231. doi:10.3969/j.issn.1674-3644.2012.03.018 YUAN Meijuan, ZHENG Wei. Fractal analysis of casson fluid flow in a capillary[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2012, 35(3):229-231. doi:10.3969/j.issn.1674-3644.2012.03.018 [59] 员美娟. 分形毛细管中Reiner-Philippoff非牛顿流体的有效渗透率研究[J]. 武汉科技大学学报(自然科学版), 2013, 36(2):158-160. doi:10.3969/j.issn.1674-3644.2013.02.018 YUAN Meijuan. Effective permeability of reinerphilippoff fluid in a fractal capillary[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2013, 36(2):158-160. doi:10.3969/j.issn.16743644.2013.02.018 [60] ØREN P E, BAKKE S, ARNTZEN O J. Extending predictive capabilities to network models[J]. SPE Journal, 1998, 3(4):324-336. doi:10.2118/52052-PA [61] PATZEK T W. Verification of a complete pore network simulator of drainage and imbibition[J]. SPE Journal, 2001, 6(2):144-156. doi:10.2118/71310-PA [62] PIRI M, BLUNT M J. Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous MEDIA I. Model description[J]. Physical Review E, 2005, 71(2):026301. doi:10.1103/PhysRevE.71.026301 [63] 叶礼友. 基于N-S方程的孔隙介质微观渗流数值模拟[D]. 武汉:武汉工业学院, 2008. YE Liyou. Numerical simulation of microcosmic seepage in porous media based on N-S equation[D]. Wuhan:Wuhan Polytechnic University, 2008. [64] VARLOTEAUX C, BEKRI S, ADLER P M. Pore network modelling to determine the transport properties in presence of a reactive fluid:From pore to reservoir scale[J]. Advances in Water Resources, 2013, 53(2):87-100. doi:10.1016/j.advwatres.2012.10.004 [65] 陈强. 基于高分辨率成像技术的页岩孔隙结构表征[D]. 成都:西南石油大学, 2014. CHEN Qiang. Pore structure characterization of shale based on high resolution imaging technology[D]. Chengdu:Southwest Petroleum University, 2014. [66] 王波,宁正福. 多孔介质微观模型重构方法研究[J]. 油气藏评价与开发, 2012, 2(2):45-49. doi:10.3969/j.issn.2095-1426.2012.02.009 WANG Bo, NING Zhengfu. Research on the reconstruction method of the micro-model of porous medium[J]. Reservoir Evaluation and Development, 2012, 2(2):45-49. doi:10.3969/j.issn.2095-1426.2012.02.009 [67] LIANG Z, IOANNIDIS M A, CHATZIS I. Geometric and topological analysis of three-dimensional porous media:Pore space partitioning based on morphological skeletonization[J]. Journal of Colloid & Interface Science, 2000, 221(1):13-24. doi:10.1006/jcis.1999.6559 [68] ØREN P E, BAKKE S. Reconstruction of berea sandstone and pore-scale modelling of wettability effects[J]. Journal of Petroleum Science & Engineering, 2003, 39(3):177-199. doi:10.1016/S0920-4105(03)00062-7 [69] JAMSHIDI S, BOOZARJOMEHRY R B, PISHVAIE M R. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms[J]. Advances in Water Resources, 2009, 32(10):1543-1553. doi:10.1016/j.advwatres.2009.07.007 [70] AL-KHARUSI A S, BLUNT M J. Network extraction from sandstone and carbonate pore space images[J]. Journal of Petroleum Science and Engineering, 2007, 56(4):219-231. doi:10.1016/j.petrol.2006.09.003 [71] RAEESI B, PIRI M. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media:A pore-scale network modeling approach[J]. Journal of Hydrology, 2009, 376(3):337-352. doi:10.1016/j.jhydrol.2009.07.060 [72] BAUER D, YOUSSEF S, FLEURY M, et al. Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed micro-tomography[J]. Transport in Porous Media, 2012, 94(2):505-524. doi:10.1007/s11242-012-9941-z [73] MASON G, MORROW N R. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes[J]. Journal of Colloid and Interface Science, 1991, 141(1):262-274. doi:10.1016/0021-9797(91)90321-X [74] LIU Jianjun, WANG Yao, SONG Rui. A pore scale flow simulation of reconstructed model based on the micro seepage experiment[J]. Geofluids, 2017(5):1-8. doi:10.1155/2017/7459346 [75] SONG Rui, CUI Mengmeng, LIU Jianjun, et al. A porescale simulation on thermal-hydromechanical coupling mechanism of rock[J]. Geofluids, 2017(21):7510527. doi:10.1155/2017/7510527 [76] JU Yang, WANG Huijie, YANG Yongming, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses[J]. Science China:Technological Sciences, 2010, 53(4):1098-1113. doi:10.1007/s11431-010-0126-0 [77] SONG Rui, LIU Jianjun, CUI Mengmeng. A new method to reconstruct structured mesh model from micro-computed tomography images of porous media and its application[J]. International Journal of Heat & Mass Transfer, 2017, 109:705-715. doi:10.1016/j.ijheatmasstransfer.2017.02.053 [78] ALDER B J, WAINWRIGHT T E. Phase transition for a hard sphere system[J]. Journal of Chemical Physics, 1957, 27(5):1208-1209. doi:10.1063/1.1743957 [79] CHEN Shiyi, DOOLEN G D. Lattice boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1):329-364. doi:10.1146/annurev.fluid.30.1.329 [80] BRUCE G H, PEACEMAN D W, RACHFORD H H, et al. Calculations of unsteady-state gas flow through porous media[J]. Journal of Petroleum Technology, 1953, 5(3):79-92. doi:10.2118/221-G [81] SHIN J Y, ABBOTTN L. Combining molecular dynamics simulations and transition state theory to evaluate the sorption rate constants for decanol at the surface of water[J]. Langmuir, 2001, 17(26):8434-8443. doi:10.1021/la0106891 [82] SUN H, YAO J, CAO Y C, et al. Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis[J]. International Journal of Heat and Mass Transfer, 2017, 104:227-239. doi:10.1016/j.ijheatmasstransfer.2016.07.083 [83] LADD A J C. Numerical simulations of particulate suspensions via a discretized boltzmann equation partⅡ:Numerical results[J]. Journal of Fluid Mechanics, 1994, 271(271):285-309. doi:10.1017/S0022112094001783 [84] SHAN X, CHEN H. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E:Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1993, 47(3):1815. doi:10.1103/PhysRevE.47.1815 [85] QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters, 1992, 17(6):479. doi:10.1209/0295-5075/17/6/001 [86] GUO Z L, SHI B C, WANG N C. Lattice BGK model for incompressible navier-stokes equation[J]. Journal of Computational Physics, 2000, 165(1):288-306. doi:10.1006/jcph.2000.6616 [87] FUENTES J M, KUZNIK F, JOHANNES K, et al. Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection[J]. Physics Letters A, 2014, 378(4):374-381. doi:10.1016/j.physleta.2013.11.042 [88] 郭照立,郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2008. GUO Zhaoli, ZHENG Chuguang. Principle and application of lattice boltzmann method[M]. Beijing:Science Press, 2008. [89] KALYANI V K, PALLAVIKA, CHAKRABORTY S K. Finite-difference time-domain method for modelling of seismic wave propagation in viscoelastic media[J]. Applied Mathematics & Computation, 2014, 237(3):133-145. doi:10.1016/j.amc.2014.03.029 [90] LIU Jianjun, SONG Rui, CUI Mengmeng. Improvement of predictions of petrophysical transport behavior using three-dimensional finite volume element model with micro-CT images[J]. Journal of Hydrodynamics, 2015, 27(2):234-241. doi:10.1016/S1001-6058(15)60477-2 [91] WALTZ J, CANFIELD T R, MORGAN N R, et al. Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions[J]. Computers & Fluids, 2013, 81(15):57-67. doi:10.1016/j.compfluid.2013.03.025 [92] BREBBIA C A, WROBEL L C. Boundary element method for fluid flow[J]. Advances in Water Resources, 1979, 2:83-89. doi:10.1016/0309-1708(79)90015-0 [93] 姚军,赵秀才. 数字岩芯及孔隙级渗流模拟理论[M]. 北京:石油工业出版社, 2010. YAO Jun, ZHAO Xiucai. Digital core and modelling theory of pore scale seepage[M]. Beijing:Petroleum Industry Press, 2010. [94] VALVATNE P H. Predictive pore-scale modelling of multiphase flow[D]. London:Imperial College, 2009. [95] LENORMAND R, ZARCONE C, SARR A. Mechanisms of the displacement of one fluid by another in a network of capillary ducts[J]. Journal of Fluid Mechanics, 2006, 135(135):337-353. doi:10.1017/S0022112083003110 [96] 赵秀才. 数字岩芯及孔隙网络模型重构方法研究[D]. 青岛:中国石油大学, 2009. ZHAO Xiucai. Numerical rock construction and pore network extraction[D]. Qingdao:China University of Petroleum (East China), 2009. [97] BLUNT M J. Physically-based network modeling of multiphase flow in intermediate-wet porous media[J]. Journal of Petroleum Science & Engineering, 1998, 20(3-4):117-125. doi:10.1016/S0920-4105(98)00010-2 |
[1] | WANG Youzhi. Fractal Characteristics of Coal Rock Pores in the Baliancheng Mining Area, Hunchun Basin [J]. 西南石油大学学报(自然科学版), 2020, 42(1): 57-68. |
[2] | XIAO Wenlian, ZHANG Junqiang, DU Yang, ZHAO Jinzhou, ZHAO Zhejun. An Experimental Study on NMR Response Characteristics of Imbibition Subjected to Pressure in Shale [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 13-18. |
[3] | HU Degao, GUO Xiao, ZHENG Aiwei, SHU Zhiguo, ZHANG Baiqiao. Productivity Evaluation of Fractured Wells in Shale Gas Reservoirs [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 132-138. |
[4] | LU Yunlong, CUI Yunjiang, LI Ruijuan, WANG Peichun. A Method for Calculating Reservoir Fracture Porosity Based on the Porous Media Model [J]. 西南石油大学学报(自然科学版), 2019, 41(5): 67-74. |
[5] | YANG Yi, YUAN Wei, YANG Dong, TAN Wei, WU Jinbo. Microscopic Formation Mechanism of Low Resistivity Oil Layers in the Wushi Sag of the Beibu Gulf Basin [J]. 西南石油大学学报(自然科学版), 2019, 41(4): 81-89. |
[6] | YIN Senlin, CHEN Gongyang, CHEN Yukun, WU Xiaojun. Mechanism of Complex Modes of the Pore Structure of Sandstone/Conglomerate Reservoirs [J]. 西南石油大学学报(自然科学版), 2019, 41(1): 1-17. |
[7] | YANG Shukun, GUO Hongfeng, ZHAO Guangyuan, JI Gongming, ZHANG Bo. Experimental Study on Hot Water Flooding in Tight Sandstone Reservoir to Reduce Water Injection Pressure and Increase Injection Capacity [J]. 西南石油大学学报(自然科学版), 2019, 41(1): 102-110. |
[8] | LIU Hongqi, LI Bo, WANG Yongjun, TIAN Jie, SUN Yangsha. Reservoir Characteristics of the Tight Oil Reservoir of the Da'anzhai Member in Central Sichuan Basin, SW China [J]. 西南石油大学学报(自然科学版), 2018, 40(6): 47-55. |
[9] | ZHANG Ying, ZHANG Haitao, HE Xipeng, GAO Yuqiao, ZHANG Peixian. Shale Pore Characteristics of Longmaxi Formation in Wulong Area, Southeastern Chongqing [J]. 西南石油大学学报(自然科学版), 2018, 40(4): 29-39. |
[10] | PENG Jun, CAO Junjiao, LI Bin, XIA Qingsong, LIU Xinyu. Comparison of Dolomite Reservoir Characteristics Between the Northern Tarim Basin and Lower Qiulitage Group of Bachu [J]. 西南石油大学学报(自然科学版), 2018, 40(2): 1-14. |
[11] | ZHAO Jianbin, WAN Jinbin, LUO Anyin, CHENG Daojie, LI Huiying. A Study on Nuclear Magnetic Resonance to Reservoir Quality Evaluation [J]. 西南石油大学学报(自然科学版), 2018, 40(1): 89-96. |
[12] | ZHANG Hengrong, HE Shenglin, ZHENG Xiangwei, HU Xiangyang, ZENG Shaojun. A New Method of Explaining the Water Saturation of Low Resistivity Reservoir with Complex Pore Structure [J]. 西南石油大学学报(自然科学版), 2018, 40(1): 97-103. |
[13] | LIU Jianjun, WU Mingyang, SONG Rui, HUANG Liuke, DAI Xiaojun. Study on Simulation Method of Multi-scale Fractures in Low Permeability Reservoirs [J]. 西南石油大学学报(自然科学版), 2017, 39(4): 90-103. |
[14] | NIU Tao, WANG Hui, HU Xiaoqing, ZHANG Yukun, GAO Yufei. Comprehensive Classification and Evaluation of Low Permeability Reservoirs Based on the Identification of Complex Lithological Characteristics [J]. 西南石油大学学报(自然科学版), 2017, 39(3): 47-56. |
[15] | CHEN Shijia, GAO Xingjun, YU Jian, MA Jie, HUANG Hai. An Analysis of the Causes of Chang 2 Low Resistivity in Middle-western Ordos Basin [J]. 西南石油大学学报(自然科学版), 2017, 39(2): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||