[1] 王浩. 分支钻孔分段水力压裂技术研究及应用[J]. 煤炭技术,2020,39(1):138-140. doi:10.13301/j.cnki.ct.2020.01.040 WANG Hao. Research and application of segmental hydraulic fracturing technology for branch drill hole[J]. Coal Technology, 2020, 39(1): 138–140. doi: 10.13301/j.cnki.ct.2020.01.040 [2] 庞贵艮. 坚硬顶板水力压裂技术及效果检验[J]. 煤炭工程, 2021, 53(3):27-30. doi:10.11799/ce202103006 PANG Guigen. Hard roof hydraulic fracturing and the effect inspection[J]. Coal Engineering, 2021, 53(3): 27–30. doi: 10.11799/ce202103006 [3] 牛进 经. 水力 压裂 技术 在野 川煤 矿初 次放 顶中 的应 用[J]. 煤炭 技术, 2022, 41(1):133-136. doi:10.13301/j.cnki.ct.2022.01.030 NIU Jinjing. Application of hydraulic in first roof caving of Yechuan coal mine[J]. Coal Technology, 2022, 41(1): 133–136. doi: 10.13301/j.cnki.ct.2022.01.030 [4] 李喜员,孙朋,王玉杰,等. 重复水力压裂技术在深井低透气性煤层中的应用[J]. 中国矿业, 2021, 30(3):161-166. LI Xiyuan, SUN Peng, WANG Yujie, et al. Application of repeated hydraulic fracturing technology in deep well low permeability coal seam[J]. China Mining Magazine, 2021, 30(3): 161–166. [5] 张潇,刘欣佳,田永东,等. 水力压裂支撑剂铺置形态影响因素研究[J]. 特种油气藏, 2021, 28(6):113-120. doi:10.3969/j.issn.1006-6535.2021.06.015 ZHANG Xiao, LIU Xinjia, TIAN Yongdong, et al. Study on factors influencing the displacement pattern of hydraulic fracturing proppant[J]. Special Oil and Gas Reservoirs, 2021, 28(6): 113–120. doi: 10.3969/j.issn.1006-653-5.2021.06.015 [6] 梁天成,才博,蒙传幼,等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田, 2021, 28(3):403-407. doi:10.6056/dkyqt202103022 LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil and Gas Field, 2021, 28(3): 403–407. doi: 10.6056/dkyqt202103022 [7] 潘林华,王海波,贺甲元,等. 水力压裂支撑剂运移与展布模拟研究进展[J]. 天然气工业, 2020, 40(10):54-65. doi:10.3787/j.issn.1000-0976.2020.10.007 PAN Linhua, WANG Haibo, HE Jiayuan, et al. Progress of simulation study on the migration and distribution of proppants in hydraulic fractures[J]. Natural Gas Industry, 2020, 40(10): 54–65. doi: 10.3787/j.issn.1000-0976.2020.10.007 [8] 海书杰. 油页岩渣制备石油支撑剂的研究[D]. 武汉:中国地质大学, 2010. HAI Shujie. Preparation of petroleum proppant from oilshale-dreg[D]. Wuhan: China University of Geosciences, 2010. [9] 马海强. 低温烧结制备陶粒支撑剂及性能研究[D]. 太原:太原科技大学, 2018. MA Haiqiang. Preparation and properties research of proppants sintered at low temperature[D]. Taiyuan: Taiyuan University of Science and Technology, 2018. [10] 史斌,苏延辉,邢洪宪,等. 基于疏水改性的超低密度控水支撑剂的制备及其性能[J]. 油田化学, 2022, 39(3):401-406, 437. doi: 10.19346/j.cnki.1000-4092.2022.03.004 SHI Bin, SU Yanhui, XING Hongxian, et al. Preparation and performance of ultra-low density water-controlling proppant based on hydrophobic modification[J]. Oilfield Chemistry, 2022, 39(3): 401–406, 437. doi: 10.19346/j.cnki.1000-4092.2022.03.004 [11] 常晓亮,吕闰生,王鹏,等. 煤储层压裂轻质陶粒支撑剂粒级配比优化[J]. 煤田地质与勘探, 2021, 49(2):28-33. doi:10.3969/j.issn.1001-1986.2021.02.004 CHANG Xiaoliang, LÜ Runsheng, WANG Peng, et al. Optimization on particle size fraction of lightweight coated ceramsite proppant in coal reservoir[J]. Coal Geology & Exploration, 2021, 49(2): 28–33. doi: 10.3969/j.issn.1001-1986.2021.02.004 [12] 力国民,常鑫,朱保顺,等. 烧结温度对添加复合助剂制备莫来石刚玉基陶粒支撑剂性能的影响[J]. 人工晶体学报, 2018, 47(9):1850-1854. doi:10.16553/j.cnki.issn1000-985x.2018.09.016 LI Guomin, CHANG Xin, ZHU Baoshun, et al. Influence of sintering temperature on performance of mullitecorundum proppant prepared by adding compound additive[J]. Journal of Synthetic Crystals, 2018, 47(9): 1850-1854. doi: 10.16553/j.cnki.issn1000-985x.2018.09.016 [13] WANG Chaoqiang, LIN Xiaoyan, WANG Dan, et al. Utilization of oil-based drilling cuttings pyrolysis residues of shale gas for the preparation of non-autoclaved aerated concrete[J]. Construction and Building Materials, 2018, 162: 359–368. doi: 10.1016/j.conbuildmat.2017.11.151 [14] 姚晓,蔡浩,王高明,等. 热解油基钻屑资源化利用(II):掺渣 水泥 浆体 系性 能[J]. 钻井 液与 完井 液,2018,35(1):94-100. doi:10.3969/j.issn.10015620.2018.01.018 YAO Xiao, CAI Hao, WANG Gaoming, et al. Resource utilization of pyrolyzed oil cuttings(II): Study on the performance of cement slurry with drilled cuttings residue[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 94–100. doi: 10.3969/j.issn.1001-5620.2018.01.018 [15] 牟军,薛屺,董朋朋,等. 铝矾土空心陶粒支撑剂的制备及性能研究[J]. 人工晶体学报, 2017, 46(7):1244-1249. doi:10.3969/j.issn.1000-985X.2017.07.009 MOU Jun, XUE Qi, DONG Pengpeng, et al. Preparation and performance of the hollow bauxite ceramic proppant[J]. Journal of Synthetic Crystals, 2017, 46(7): 1244-1249. doi: 10.3969/j.issn.1000-985X.2017.07.009 [16] 孙建辉. 油基钻屑残渣制备免烧压裂支撑剂的研究[D]. 北京:中国石油大学(北京), 2019. doi:10.27643/d.cnki.gsybu.2019.001033 SUN Jianhui. Research on preparation of non-burning fracturing proppant by oil-based drilling residue[D]. Beijing: China University of Petroleum (Beijing), 2019. doi: 10.27643/d.cnki.gsybu.2019.001033 [17] MOHAMMAD S P, RASOOL A. Influence of cement addition on the geotechnical properties of an Iranian clay[J]. Applied Clay Science, 2012, 67–68: 1–4. doi: 10.1016/j.clay.2012.07.006 [18] 中国石油天然气股份有限公司石油勘探开发研究院廊坊分院. 水力压裂和砾石充填作业用支撑剂性能测试方法:SY/T 5108-2014[S]. 北京:石油工业出版社, 2014. Petrochina Petroleum Exploration and Development Research Institute Langfang branch. Proppant performance test method for hydraulic fracturing and gravel packing operations: SY/T5108–2014[S]. Beijing: Petroleum Industry Press, 2014. [19] 孔祥明,卢子臣,张朝阳. 水泥水化机理及聚合物外加剂对水泥水化影响的研究进展[J]. 硅酸盐学报, 2017, 45(2):274-281. doi:10.14062/j.issn.0454-5648.2017.02.15 KONG Xiangming, LU Zichen, ZHANG Chaoyang. Recent development on understanding cement hydration mechanism and effects of chemical admixtures on cement hydration[J]. Journal of Chinese Ceramic Society, 2017, 45(2): 274–281. doi: 10.14062/j.issn.0454-5648.2017.02.15 [20] TAMANNA N, SUTAN N M, YAKUB I, et al. Influence of mortar incorporating silica based waste material on the formation of C–S–H and mechanical strength properties[J]. Applied Mechanics and Materials, 2014, 695: 647–650. doi: 10.4028/www.scientific.net/AMM.695.647 [21] ZOU Jinlong, DAI Ying, YU Xiujuan, et al. Structures and metal leachability of sintered sludge-clay ceramsite affected by raw material basicity[J]. Journal of Environmental Engineering, 2011, 137(5): 398–405. doi: 10.1061/(ASCE)EE.1943-7870.0000324 [22] VIEHLAND D, LI J, YUAN L, et al. Mesostructure of calcium silicate hydrate (C–S–H) gels in portland cement paste: Short-range ordering, nanocrystallinity, and local compositional order[J]. Journal of the American Ceramic Society, 1996, 79(7): 1731–1744. doi: 10.1111/j.1151-2916.1996.tb07990.x [23] LU Zhongyuan, TAN Kefeng. Activity of β-C2S under different sintering conditions[J]. Cement and Concrete Research, 1997, 27(7): 989–993. [24] CHENG Bei, LEI Ming, YU Jiaguo, et al. Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction[J]. Materials Letters, 2004, 58(10): 1565–1570. doi: 10.1016/j.matlet.2003.10.027 [25] KAKALI G, TSIVILIS S, AGGELI E, et al. Hydration products of C3A, C3S and portland cement in the presence of CaCO3[J]. Cement and Concrete Research, 2000, 30(7): 1073–1077. doi: 10.1016/S0008-8846(00)00292-1 [26] 陶文宏,刘宗明,张明星,等. 脱硫石膏-石灰-粉煤灰体系胶凝性及水化机理[J]. 济南大学学报(自然科学版),2010,24(3):233-237. doi:10.3969/j.issn.1671-3559.2010.03.004 TAO Wenhong, LIU Zongming, ZHANG Mingxing, et al. Cementitious property and hydration mechanism of desulphogypsum-lime-fly ash system[J]. Journal of University of Jinan (Science and Technology), 2010, 24(3): 233–237. doi: 10.3969/j.issn.1671-3559.2010.03.004 [27] 钱觉时,余金城,孙化强,等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11):1569-1581. doi:10.14062/j.issn.0454-5648.2017.11.04 QIAN Jueshi, YU Jincheng, SUN Huaqiang, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569–1581. doi: 10.14062/j.issn.0454-5648.2017.11.04 [28] FRANQUET A, PEN L C, TERRYN H, et al. Effect of bath concentration and curing time on the structure of non-functional thin organosilane layers on aluminium[J]. Electrochimica Acta, 2003, 48(9): 1245–1255. doi: 10.1016/S0013-4686(02)00832-0 [29] ATAHAN H N, OKTAR O N, TASDEMIR M A. Effects of water-cement ratio and curing time on the critical pore width of hardened cement paste[J]. Construction and Building Materials, 2009, 23(3): 1196–1200. doi: 10.1016/j.conbuildmat.2008.08.011 [30] FENG Pan, MIAO Changwen, BULLARD J W. Factors influencing the stability of AFm and AFt in the Ca-Al-S-O-H system at 25℃[J]. Journal of the American Ceramic Society, 2016, 99(3): 1031–1041. doi: 10.1111/jace.13971 |