[1] OROZCO D, FRAGOSO A, SELVAN K, et al. Eagle ford huff 'n' puff gas-injection pilot: Comparison of reservoir-simulation, material balance, and real performance of the pilot well[J]. SPE Reservoir Evaluation & Engineering, 2020, 23(1): 247-260. doi: 10.2118/191575-PA [2] 鞠斌山,杨怡,杨勇,等. 高含水油藏CO2 驱油与地质封存机理研究现状及待解决的关键问题[J]. 油气地质与采收率, 2023, 30(2): 53-67. doi: 10.13673/j.cnki.cn37-1359/te.202208001 JU Binshan, YANG Yi, YANG Yong, et al. Present research situation and key pending issues of CO2 flooding and geological storage mechanism in high water-cut reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 53-67. doi: 10.13673/j.cnki.cn37-1359/te.202208001 [3] 张明龙,王磊,崔强,等. 二氧化碳驱油储层物性变化实验研究[J]. 世界石油工业, 2023, 30(3): 90-96. doi:10.20114/j.issn.1006-0030.20230316003 ZHANG Minglong, WANG Lei, CUI Qiang, et al. Experimental study on reservoir physical property change of carbon dioxide flooding[J]. World Petroleum Industry, 2023, 30(3): 90-96. doi: 10.20114/j.issn.1006-0030.20230316003 [4] ZHANG Xue, SU Yuliang, LI Lei, et al. Microscopic remaining oil initiation mechanism and formation damage of CO2 injection after waterflooding in deep reservoirs[J]. Energy, 2022, 248: 123649. doi: 10.1016/j.energy.2022.123649 [5] ZHOU Xiang, JIANG Qi, YUAN Qingwang, et al. Determining CO2 diffusion coefficient in heavy oil in bulk phase and in porous media using experimental and mathematical modeling methods[J]. Fuel, 2020, 263: 116205. doi: 10.1016/j.fuel.2019.116205 [6] KUMAR N, SAMPAIO M A, OJHA K, et al. Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review[J]. Fuel, 2022, 330: 125633. doi: 10.1016/j.fuel.2022.125633 [7] 肖文联,任吉田,王磊飞,等. 鄂尔多斯盆地西233区长7页岩油注伴生气原油动用特征实验[J]. 油气地质与采收率, 2022, 29(5): 91-101. doi: 10.13673/j.cnki.cn37-1359/te.202108044 XIAO Wenlian, REN Jitian, WANG Leifei, et al. Experimental study on oil production characteristics in shale oilfrom Xi233 Area Chang7 reservoir during injecting associated gas[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 91-101. doi: 10.13673/j.cnki.cn371359/te.202108044 [8] 余传谋,陈奕阳. 文留异常高压油藏注天然气驱室内实验研究[J]. 西南石油大学学报(自然科学版), 2013, 35(2): 135-140. doi: 10.3863/j.issn.1674-5086.2013.02.020 YU Chuanmou, CHEN Yiyang. Experimental research on natural gas flooding in abnormal high pressure reservoir in Wenliu Block[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(2): 135-140. doi: 10.3863/j.issn.1674-5086.2013.02.020 [9] SZLENDAK S M, NGUYEN N, NGUYEN Q P. Laboratory investigation of low-tension-gas flooding for improved oil recovery in tight formations[J]. SPE Journal, 2013, 18(5): 851-866. doi: 10.2118/159841-PA [10] 冯高城,胡云鹏,姚为英,等. 注气驱油技术发展应用及海上油田启示[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 147-155. doi: 10.11885/j.issn.1674-5086.2018.07.18.01 FENG Gaocheng, HU Yunpeng, YAO Weiying, et al. Development and application of gas injection for oil recovery from offshore oilfields[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(1): 147-155. doi: 10.11885/j.issn.1674-5086.2018.07.18.01 [11] MASALMEH S, FARZANEH S A, SOHRABI M, et al. A systematic experimental study to understand the performance and efficiency of gas injection in carbonate reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2023, 26(4): 1159-1174. doi: 10.2118/200057-PA [12] HAO Hongda, HOU Jirui, ZHAO Fenglan, et al. Laboratory investigation of cyclic gas injection using CO2/N2 mixture to enhance heavy oil recovery in a pressuredepleted reservoir[J]. Arabian Journal of Geosciences, 2020, 13: 1-12. doi: 10.1007/s12517-020-5131-4 [13] POURHADI S, FATH A H. Performance of the injection of different gases for enhanced oil recovery in a compositionally grading oil reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(2): 641-661. doi: 10.1007/s13202-019-0723-9 [14] RYLANDER E, PHILIP M S, JIANG Tianmin, et al. NMR T2 distributions in the Eagle Ford shale: reflections on pore size[C]. SPE 164554-MS, 2013. doi: 10.2118/164554-MS [15] ZHANG Tong, TANG Ming, MA Yankun, et al. Experimental study on CO2/water flooding mechanism and oil recovery in ultralow-permeability sandstone with online LF-NMR[J]. Energy, 2022, 252: 123948. doi: 10.1016/j.energy.2022.123948 [16] 张辉,李忠诚,祝孝华,等. 吉林特低渗油藏长岩芯CO2 驱替微观动用规律研究[J]. 中国科技论文, 2024, 19(1): 50-56. doi: 10.3969/j.issn.2095-2783.2024.01.007 ZHANG Hui, LI Zhongcheng, ZHU Xiaohua, et al. Study on micro-utilization of CO2 drive in long core of Jilin ultralow permeability reservoir[J]. China Sciencepaper, 2024, 19(1): 50-56. doi: 10.3969/j.issn.2095-2783.2024.01.007 [17] 袁伟峰,侯吉瑞,刘洋,等. 海上油田水驱后剩余油分布规律及二元驱动用潜力[J]. 石油科学通报, 2025, 10(1): 133-143. doi: 10.3969/j.issn.2096-1693.2025.03.003 YUAN Weifeng, HOU Jirui, LIU Yang, et al. Residual oil distribution pattern and binary flooding utilization potential ofoffshore oilfields after waterflooding[J]. Petroleum Science Bulletin, 2025, 10(1): 133-143. doi: 10.3969/j.issn.2096-1693.2025.03.003 [18] 宋睿,刘建军,李光. 基于CT图像及孔隙网格的岩芯孔渗参数研究[J]. 西南石油大学学报(自然科学版), 2015, 37(3): 138-145. doi: 10.11885/j.issn.1674-5086.2015.04.03.03 SONG Rui, LIU Jianjun, LI Guang. Researches on the pore permeability of core sample based on 3D micro-ctmages and pore-scale structured element models[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(3): 138-145. doi: 10.11885/j.issn.1674-5086.2015.04.03.03 [19] 董怀民,孙建孟,林振洲,等. 基于CT扫描的天然气水合物储层微观孔隙结构定量表征及特征分析[J]. 中国石油大学学报(自然科学版), 2018, 42(6): 40-49. doi: 10.3969/j.issn.1673-5005.2018.06.005 DONG Huaimin, SUN Jianmeng, LIN Zhenzhou, et al. Quantitative characterization and characteristies analysis of microscopicpore structure in natural gas hydrate based on CT scanning[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6): 40-49. doi: 10.3969/j.issn.1673-5005.2018.06.005 [20] ARMSTRONG R T, WILDENSCHILD D, BAY B K. The effect of pore morphology on microbial enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2015, 130: 16-25. doi: 10.1016/j.petrol.2015.03.010 [21] JING Wenlong, ZHANG Lei, LI Aifei, et al. Investigation of pore-scale remaining oil dynamic evolution in heterogeneous marine carbonate using real-time computed tomography scanning[J]. Energy & Fuels, 2022, 36(15): 8180-8188. doi: 10.1021/acs.energyfuels.2c01497 [22] ZHANG Tao, SUN Shuyu. A coupled Lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption[J]. Fuel, 2019, 246: 196-203. doi: 10.1016/j.fuel.2019.02.117 [23] 胡伟,吕成远,王锐,等. 水驱油藏注CO2 非混相驱油机理及剩余油分布特征[J]. 油气地质与采收率, 2017, 24(5): 99-105. doi: 10.13673/j.cnki.cn37-1359/te.2017.05.015 HU Wei, LÜ Chengyuan, WANG Rui, et al. Mechanism of CO2, immiscible flooding and distribution of remaining oil in water drive oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5): 99-105. doi: 10.13673/j.cnki.cn37-1359/te.2017.05.015 [24] 中国国家标准化管理委员会. 岩心分析法: GB/T 29172-2012[S]. 北京:中国标准出版社, 2012. Standardization Administration of the People's Republic of China. Practices for core analysis: GB/T 29172-2012[S]. Beijing: Standards Press of China, 2012. [25] 彭石林,尉中良,管志宁. 顺磁物质对岩石核磁弛豫特性影响的实验研究[J]. 石油物探, 2002, 41(3): 372-376. doi: 10.3969/j.issn.1000-1441.2002.03.026 PENG Shilin, WEI Zhongliang, GUAN Zhining. Experimental study of impact of paramagnetic materials to the nuclear magnetic relaxationcharacteristics of rocks[J]. Geophysical Prospecting for Petroleum, 2002, 41(3): 372-376. doi: 10.3969/j.issn.1000-1441.2002.03.026 [26] 张旭东,康楠,何伟,等. 砂岩样泡氘水法确定含油饱和度核磁共振实验研究[J]. 石油化工应用, 2017, 36(11): 32-37. doi: 10.3969/j.issn.1673-5285.2017.11.008 ZHANG Xudong, KANG Nan, HE Wei, et al. Experimental study on nuclear magnetic resonance of sandstone samples by the methods ofsoaking deuterium water[J]. Petrochemical Industry Application, 2017, 36(11): 32-37. doi: 10.3969/j.issn.1673-5285.2017.11.008 [27] 国家能源局. 最低混相压力实验测定方法——细管法: SY/T 6573-2016[S]. 北京:中国标准出版社, 2016. National Energy Administration. Measurement method for minimum miscibility pressure by slim tube test: SY/T 6573-2016[S]. Beijing: Standards Press of China, 2016. [28] ZHAO Xurong, ZHOU Fujian, CHEN Zhiming, et al. Dynamic monitoring and enhanced oil recovery evaluation of the water flooding process of liquid nanofluids in tight reservoirs[J]. Energy & Fuels, 2023, 37(6): 4256-4266. doi: 10.1021/acs.energyfuels.2c03936 [29] 戴仪心,郭和坤,李海波,等. 致密油储层气驱油核磁共振实验研究[J]. 中国科技论文, 2020, 15(1): 105-111. doi: 10.3969/j.issn.2095-2783.2020.01.016 DAL Yixin, GUO Hekun, LI Haibo, et al. NMR experimental study of gas flooding of tight oil reservoir[J]. China Sciencepaper, 2020, 15(1): 105-111. doi: 10.3969/j.issn.2095-2783.2020.01.016 [30] 高辉,程媛,王小军,等. 基于核磁共振驱替技术的超低渗透砂岩水驱油微观机理实验[J]. 地球物理学进展, 2015, 30(5): 2157-2163.doi: 10.6038/pg20150521 GAO Hui, CHENG Yuan, WANG Xiaojun, et al. Experiment of microscopic water displacement mechanism based on NMR displacement technology in ultra low permeability sandstone[J]. Progress in Geophysics, 2015, 30(5): 2157-2163. doi: 10.6038/pg20150521 |