西南石油大学学报(自然科学版) ›› 1999, Vol. 21 ›› Issue (4): 35-37.DOI: 10.3863/j.issn.1000-2634.1999.04.010

• 油气藏工程 • 上一篇    下一篇

运用BP人工神经网络计算储集层含水饱和度

胡俊   

  1. 西南石油学院石油勘探系,四川南充637001
  • 收稿日期:1999-02-28 修回日期:1900-01-01 出版日期:1999-11-20 发布日期:1999-11-20
  • 通讯作者: 胡俊

APPLICATION OF BP ARTIFICIAL NEURAL NETWORK ON CALCULATING RESERVOIR WATER SATURATION

HU Jun   

  1. Southwest Petroleum Inst
  • Received:1999-02-28 Revised:1900-01-01 Online:1999-11-20 Published:1999-11-20
  • Contact: HU Jun

摘要: 与传统的测井综合解释与数字处理方法相比较,BP人工神经网络方法具有极大的优越性和适用性,它勿需传统测井综合解释与数字处理方法所需的各种建立在试验之上的非精确的测井解释公式,只需知道测井原始数据和求解的实际数据,而在进行求解参数预测时则只需知道测井原始数据即可。这为复杂地层以及其它一些特殊情况下的测井解释和数字处理提供了一条切实可行的新途径。

关键词: 测井, 含水饱和度, 人工神经网络, 权重, 节点

Abstract: Compared with the traditional comprehensive interpretation and digital processing well logging, BP artificial neural network methods have overwhelming advantages and suitability, it requires no well logging interpretation equation based on testing which the traditional interpretation and processing methods does, it needs the original logging and the practical data for solution, only the original logging data is enough in the process of
the parameter prediction, which provides a new and practical approach to well logging comprehensive interpretation and digital processing for the complicated formations and specials.

Key words: well logging, water saturation, artificial neural network, training, weight, node

中图分类号: