西南石油大学学报(自然科学版) ›› 2019, Vol. 41 ›› Issue (2): 118-126.DOI: 10.11885/j.issn.1674-5086.2018.07.16.01

• 石油与天然气工程 • 上一篇    下一篇

页岩储层纳米孔气体传输耦合模型新研究

黄婷1, 谭伟2, 庄琦2, 王国盛2, 殷婷婷2   

  1. 1. 长江大学非常规油气湖北省协同创新中心, 湖北 武汉 430100;
    2. 长江大学石油工程学院, 湖北 武汉 430100
  • 收稿日期:2018-07-16 出版日期:2019-04-10 发布日期:2019-04-10
  • 通讯作者: 黄婷,E-mail:huangting331@126.com
  • 作者简介:黄婷,1988年生,女,汉族,湖北武汉人,讲师,博士,主要从事非常规油气渗流机理及数值模拟方面的研究。E-mail:huangting331@126.com;谭伟,1995年生,男,汉族,重庆人,主要从事页岩气渗流机理研究。E-mail:814958777@qq.com;庄琦,1997年生,男,汉族,陕西榆林人,主要从事页岩气渗流机理研究。E-mail:1900679914@qq.com;王国盛,1997年生,男,汉族,云南昆明人,主要从事页岩气渗流机理研究。E-mail:99479522@qq.com;殷婷婷,1996年生,女,汉族,山东枣庄人,主要从事页岩气渗流机理研究。E-mail:21416144@qq.com
  • 基金资助:
    国家自然科学基金(51704032);长江大学大学生创新训练项目(2017090)

Coupling Model for Nanopore Gas Transport in Shale Reservoirs

HUANG Ting1, TAN Wei2, ZHUANG Qi2, WANG Guosheng2, YIN Tingting2   

  1. 1. Hubei Collaborative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China;
    2. College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
  • Received:2018-07-16 Online:2019-04-10 Published:2019-04-10

摘要: 页岩气在纳米孔隙的传输过程中受多种因素影响,包括孔隙尺寸和压力、孔隙壁面粗糙度、孔隙力学反应、吸附诱导膨胀反应以及权重因子等。因此需要综合考虑以上因素以及吸附气分子在孔隙中所占空间对气体流动影响的条件下,厘清页岩气的不同运移机制(表面扩散、滑脱流、Knudsen扩散和黏性流动)在不同孔隙尺寸和压力下对纳米孔中总气体流量的贡献率。首先,对页岩气的不同运移方式进行了物理描述及数学表征,然后,在考虑孔隙壁面粗糙度、孔隙力学反应、吸附诱导膨胀反应和权重因子等因素的条件下,建立页岩气在储层纳米孔中的气体传输耦合数学模型,模型可靠性通过格子Boltzmann方法计算结果验证。研究结果表明,当孔径小于10 nm时,纳米孔的总流量主要由表面扩散流量组成,孔径越小,表面扩散流量越大;当孔径为40~250 nm和低压条件下,滑脱流和Knudsen扩散对气体传输影响较大;当孔径大于10 μm时,纳米孔的总流量主要为黏性流量。

关键词: 页岩气, 表面扩散, 孔隙力学反应, 吸附诱导膨胀反应, 权重因子

Abstract: Shale gas is affected by many factors during nanopore transport, including pore size and pressure, pore wall surface roughness, pore mechanics reaction, adsorption-induced expansion reaction, and weighting factors. Therefore, the effects that these factors and the space occupied by the adsorbed gas molecules in the pores have on the gas flow must be considered. This is necessary to clarify the contribution to the total gas flow in the nanopores resulting from different migration mechanisms of shale gas (surface diffusion, slip flow, Knudsen diffusion, and viscous flow) based on different pore sizes and pressures. First, physical descriptions and mathematical characterizations of different migration mechanisms of shale gas are provided. A mathematical gas transport coupling model for shale gas is then developed that considers pore wall surface roughness, pore mechanics reaction, adsorption-induced expansion reaction, and weighting factors. The reliability of the model is verified by the lattice Boltzmann method. The results show that when the pore diameter is less than 10 nm, the total flow in the nanopores mainly consists of surface diffusion flux. In addition, the smaller the pore size, the greater is the surface diffusion flux. When the pore diameter is 40~250 nm at low pressure, the slip flow and Knudsen diffusion have a considerable effect on gas transport. When the pore diameter is longer than 10 μm, the total flow in the nanopores is primarily viscous.

Key words: shale gas, surface diffusion, pore mechanics reaction, adsorption-induced expansion reaction, weighting factor

中图分类号: