西南石油大学学报(自然科学版) ›› 2007, Vol. 29 ›› Issue (6): 31-33.DOI: 10.3863/j.issn.1000-2634.2007.06.007

• 地质勘探 • 上一篇    下一篇

基于微粒群算法的神经网络储层物性参数预测

王文娟1 曹俊兴1 张元标2 王小权1   

  1. 1.成都理工大学,四川 成都 610059; 2.暨南大学包装工程研究所,广东 珠海 519070
  • 收稿日期:2006-09-29 修回日期:1900-01-01 出版日期:2007-12-20 发布日期:2007-12-20
  • 通讯作者: 王文娟

RESERVOIR PARAMETER PREDICTION OF NEURAL NETWORK BASED ON PARTICLE SWARM OPTIMIZATION

WANG Wen-juan CAO Jun-xing ZHANG Yuan-biao WANG Xiao-quan   

  1. 1.Chengdu University of Technology,Chengdu Sichuan 610059,China;2.Packaging Engineering Institute,Jinan University,Zhuhai Guangdong 519070,China
  • Received:2006-09-29 Revised:1900-01-01 Online:2007-12-20 Published:2007-12-20
  • Contact: WANG Wen-juan

摘要:

建立了一个具有自适应、复杂非线性储层预测模型,在计算方法上,由于多层前向型神经网络BP算法存在易陷入局部最优的缺点,而微粒群算法具有较强鲁棒性和全局收敛的优点。结合二者长处,利用基于微粒群算法的神经网络计算方法,对神经网络结构进行了改进。利用四川洛带地区气田的测井资料,用所设计的算法对储层的物性参数(孔隙度、渗透率)进行预测,并对其预测精度与用常规基于BP算法和基于LMBP算法得到的预测结果进行了比较分析,发现地质效果明显,有效地克服了基于BP算法和基于LMBP算法的缺点。

关键词: 神经网络, 孔隙度, 渗透率, 微粒群算法, 储层参数预测

Abstract:

A Predictive reservoir model with the selfadoption and complicated nonlinear property is set up. Because Multilayer Feed Forward Neural Networks BP Algorithm exists weakness of getting bogged down in the local optima, stronger robustness and global convergence of PSO Algorithm, this research makes use of the particle swarm optimization (PSO) to improve the neural network, then, on the basis of the Luodai gas field in Sichuan Province, by the computation methods of PSO of the neural network, the reservoir characters(such as porosity, permeability) is forecasted, also the precision is tested and is compared with traditional computation methods of BP and LMBP, by which a obvious geography efficiency superior to traditional explanation methods is obtained, the shortcoming base from BP and LMBP algorithm are effectively overcome.

Key words: artificial neural networks, porosity, permeability, particle swarm optimization, the forecast of the layer parameters

中图分类号: