[1] VERGARA M R, TRIANTAFYLLIDIS T. Influence of water content on the mechanical properties of an argillaceous swelling rock[J]. Rock Mechanics & Rock Engineering, 2016, 49(7):2555-2568. doi:10.1007/s00603-016-0938-8 [2] 王莎莎, 谢学斌, 肖崇春, 等. 考虑干湿循环效应的砂岩边坡稳定性研究[J]. 矿冶工程, 2015, 35(6):20-24. doi:10.3969/j.issn.0253-6099.2015.06.005 WANG Shasha, XIE Xuebin, XIAO Chongchun, et al. Impact of cyclic wetting and drying on stability of sandstone slop[J] Mining and Metallurgical Engineering, 2015, 35(6):20-24. doi:10.3969/j.issn.0253-6099.2015.06.005 [3] 王涛, 王嘉昆, 潘冬. 四川汉源康家坡滑坡形成机理与滑坡堰塞坝泥石流灾害链分析[J]. 中国地质灾害与防治学报, 2020, 31(1):1-7. doi:10.16031/j.cnki.issn.1003-8035.2020.01.01 WANG Tao, WANG Jiakun, PAN Dong. Analyisis onmechanism of Kangjiapo landslide and consequent debris flow in Hanyuan country of Sichuan province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1):1-7. doi:10.16031/j.cnki.issn.1003-8035.2020.01.01 [4] 李黎, 王思敬, 谷本親伯. 龙游石窟砂岩风化特征研究[J]. 岩石力学与工程学报, 2008, 27(6):1217-1222. doi:10.3321/j.issn:1000-6915.2008.06.016 LI Li, WANG Sijing, TANIMOTO Chikaosa. Study of weathering characteristics of sandstone at Longyou grottoes[J], 2008, 27(6):1217-1222. doi:10.3321/j.issn:1000-6915.2008.06.016 [5] 向力, 王乐华, 陈招军, 等. 干湿循环作用下砂岩的劣化及破坏特性研究[J]. 水利水电技术, 2017, 48(5):142-147. doi:10.13928/j.cnki.wrahe.2017.05.022 XIANG Li, WANG Lehua, CHEN Zhaojun, et al. Study on deterioration and failure characteristics of sandstone under effect of wet-dry cycle[J]. Water Resources and Hydropower Engineering, 2017, 48(5):142-147. doi:10.13928/j.cnki.wrahe.2017.05.022 [6] 邓华锋, 李建林, 朱敏, 等. 饱水-风干循环作用下砂岩强度劣化规律试验研究[J]. 岩土力学, 2012, 33(11):3306-3312. DENG Huafeng, LI Jianlin, ZHU Min, et al. Experimental research on strength deterioration rules of sandstone under saturation-air dry circulation function[J]. Rock and Soil Mechanics, 2012, 33(11):3306-3312. [7] 朱朝辉, 吴平, 姚华彦, 等. 饱水干-燥循环和长期饱水砂岩劈裂试验[J]. 水电能源科学, 2012, 30(12):58-60. ZHU Zhaohui, WU Ping, YAO Huayan, et al. Split test of sandstone under conditions of cyclic saturation-drying and long-term saturation[J]. Internation Journal Hydroelectric Energy, 2012, 30(12):58-60. [8] 朱敏, 邓华锋, 周时, 等. 水岩作用下砂岩断裂韧度及抗拉强度的试验研究[J]. 三峡大学学报(自然科学版), 2012, 34(5):34-38. ZHU Min, DENG Huafeng, ZHOU Shi, et al. Experimental research on fracture toughness and tensile strength of sandstone under water-rock interaction[J]. Journal of China Three Gorges University (Natural Sciences), 2012, 34(5):34-38. [9] KHANLARI G, ABDILOR Y. Influence of wet-dry, freeze-thaw, and heat-cool cycles on the physical and mechanical properties of upper red sandstones in central Iran[J]. Bulletin of Engineering Geology & the Environment, 2015, 74(4):1287-1300. [10] YING P, ZHU Z M, REN L, et al. Deterioration of dynamic fracture characteristics, tensile strength and elastic modulus of tight sandstone under dry-wet cycles[J]. Theoretical and Applied Fracture Mechanics, 2020, 109(3):102698. [11] 李达朗, 杨根兰, 鲁鲲鹏, 等. 干湿循环脆性红砂岩的孔隙及声发射特征研究[J]. 贵州大学学报(自然科学版), 2020, 37(2):79-85. doi:10.15958/j.cnki.gdxbzrb.2020.02.16 LI Dalang, YANG Genlan, LU Kunpeng, et al. Studyon the porosity and acoustic emission characteristicsof brittle red sandstone under dry-wet cycle[J]. Journal of Guizhou University (Natural Sciences), 2020, 37(2):79-85. doi:10.15958/j.cnki.gdxbzrb.2020.02.16 [12] HALE P A. A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones[J]. Environmental & Engineering Geoence, 2003, 9(2):117-130. [13] SUN Q, ZHANG Y L. Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone[J]. Engineering Geology, 2019(248):70-79. doi:10.1016/j.enggeo.2018.11.009 [14] ÖZBEK A. Investigation of the effects of wetting drying and freezing thawing cycles on some physical and mechanical properties of selected ignimbrites[J]. Bulletin of Engineering Geology and the Environment, 2013, 73(2):595-609. [15] MAK K, FAM A. The effect of wet-dry cycles on tensile properties of unidirectional flax fiber reinforced polymers[J]. Composites Part B:Engineering, 2020(183):107645. doi:10.1016/j.compositesb.2019.107645 [16] YUAN W, LIU X, FU Y. Chemical thermodynamics and chemical kinetics analysis of sandstone dissolutionunder the action of dryt-wet cycles in acid and alkaline environments[J]. Bulletin of Engineering Geology & the Environment, 2019, 78(2):1-9. [17] LIU X R, WANG Z J, FU Y, et al. Macro microtesting and damage and degradation of sandstones under dry-wet cycles[J]. Advances in Materials Science and Engineering, 2016(1):1-16. [18] 汤连生, 张鹏程, 王思敬. 水-岩化学作用之岩石断裂力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(6):822-827. doi:10.3321/j.issn:1000-6915.2002.06.012 TANG Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on effects of chemical action of aqueous solution on crack propagation in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6):822-827. doi:10.3321/j.issn:1000-6915.2002.06.012 [19] ZHOU Z L, CAI X, MA D, et al. Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content[J]. Engineering Fracture Mechanics, 2018(193):47-65. doi:10.1016/j.engfracmech.2018.02.028 [20] HAO R Q, LI J T, CAO P, et al. Test of subcritical crack growth and fracture toughness under water-rock interaction in three types of rocks[J]. Journal of Central South University, 2015(2):662-668. doi:10.1007/s11771-015-2568-9 [21] 韩铁林, 师俊平, 陈蕴生. 化学腐蚀和干湿循环作用下砂岩I型断裂韧度及其强度参数相关性的研究[J]. 水利学报, 2018, 49(10):1265-1275. HAN Tielin, SHI Junping, CHEN Yunsheng. Experimental study on mode-I fracture toughness and its correlation with strength characteristic of sandstone under dry-wet cylces[J]. Journal of Hydraulic Engineering, 2018, 49(10):1265-1275. [22] HUA W, DONG S M, PENG F, et al. Experimental investigation on the effect of wetting-drying cycles on mixed mode fracture toughness of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2017(93):242-249. doi:10.1016/j.ijrmms.2017.01.017 [23] HUA W, DONG S M, LI Y F, et al. Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone[J]. Engineering Fracture Mechanics, 2016(153):143-150. doi:10.1016/j.engfracmech.2015.11.020 [24] 华文, 董世明, 徐积刚. 复合型加载条件下锈岩断裂韧度试验研究[J]. 岩土力学, 2016, 37(3):753-758. doi:10.16285/j.rsm.2016.03.018 HUA Wen, DONG Shiming, XU Jigang. Experimental research on fracture toughness of rust stone under mixed mode loading conditions[J]. Rock and Soil Mechanics, 2016, 37(3):753-758. doi:10.16285/j.rsm.2016.03.018 [25] Dong S M, WANG Y, XIA Y M. Stress intensity factors for central cracked circular disk subjected to compression[J]. Engineering Fracture Mechanics, 2004, 71(7):1135-1148.doi:10.1016/S0013-7944(03)00120-6 [26] HUA W, LI J X, DONG S M, et al. Experimental study on mixed mode fracture behavior of sandstone under water-rock interactions[J]. Processes, 2019, 7(2):70. doi:10.3390/pr7020070 [27] HUA W, DONG S M, PAN X, et al. Mixed mode fracture analysis of CCBD specimens based on the extended maximum tangential strain criterion[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(12):2118-2127. doi:10.1111/ffe.12638 [28] HUA W, LI Y F, DONG S M, et al. T-stress for a centrally cracked brazilian disk under confining pressure[J]. Engineering Fracture Mechanics, 2015(149):37-44. doi:10.1016/j.engfracmech.2015.09.048 [29] ALIHA M R M, SAGHAFI H. The effects of thickness and poisson's ratio on 3d mixed-mode fracture[J]. Engineering Fracture Mechanics, 2013, 98(1):15-28. |