[1] 蔡建超,郁伯铭. 多孔介质自发渗吸研究进展[J]. 力学进展, 2012, 42(6):735-754.10.6052/1000-0992-11-096 CAI Jianchao, YU Boming, Advances in studies of spontaneous imbibition in porous media[J]. Advances in Mechanics, 2012, 42(6):735-754.10.6052/1000-0992-11-096 [2] LUCAS R. Rate of capillary ascension of liquids[J]. Kolloid-Zeitschrift, 1918, 23:15-22. [3] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review Journals Archive, 1921, 17(3):273-283. doi:10.1103/PhysRev.17.273 [4] 李志清,孙洋,胡瑞林,等. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 2018, 26(3):758-766. doi:10.13544/j.cnki.jeg.2017-126 LI Zhiqing, SUN Yang, HU Ruilin, et al. Quantitative analysis for nanopore structure characteristics of shales using NMR and NMR cryoporometry[J]. Journal of Engineering Geology, 2018, 26(3):758-766. doi:10.13544/j.cnki.jeg.-2017-126 [5] 何梦莹. 致密砂岩渗吸规律研究[D]. 荆州:长江大学, 2017. HE Mengying. Research on imbibition mechanism of tight sandstone[D]. Jingzhou:Yangtze University, 2017. [6] LI K W, CHOW K, HORNE R N. Effect of initial water saturation on spontaneous water imbibition[C]. SPE 76727-MS, 2002. doi:10.2118/76727-MS [7] 杨柳. 压裂液在页岩储层中的吸收及其对工程的影响[D]. 北京:中国石油大学(北京), 2016. YANG Liu. Fracturing fluid imbibition into gas shale and its impact on engineering[D]. Beijing:China University of Petroleum (Beijing), 2016. [8] 黄和钰. 页岩储层缝网结构对压裂液返排的影响[D]. 北京:中国石油大学(北京), 2016. HUANG Heyu. The effect of fracture network structure of shale gas reservoir on frac-water flow-back[D]. Beijing:China University of Petroleum (Beijing), 2016. [9] 杨发荣,左罗,胡志明,等. 页岩储层渗吸特性的实验研究[J]. 科学技术与工程, 2016, 16(25):63-66, 74. doi:10.3969/j.issn.1671-1815.2016.25.010 YANG Farong, ZUO Luo, HU Zhiming, et al., Researching the water imbibition characteristic of shale by experiment[J]. Science Technology and Engineering, 2016, 16(25):63-66, 74. doi:10.3969/j.issn.1671-1815.2016.-25.010 [10] 申颍浩,葛洪魁,宿帅,等. 页岩气储层的渗吸动力学特性与水锁解除潜力[J]. 中国科学:物理学,力学,天文学, 2017, 47(11):88-98. doi:10.1360/SSPMA2016-00538 SHEN Yinghao, GE Hongkui, SU Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(11):88-98. doi:10.1360/SSPMA-2016-00538 [11] HIRASAKI G J, LO S W, ZHANG Y. NMR properties of petroleum reservoir fluids[J]. Magnetic Resonance Imaging, 2003, 21(3):269-277. doi:10.1016/S0730-725X(03)-00135-8 [12] MINH C C, JAIN V, GRIFFITHS R, et al. NMR T2 fluids substitution[R]. Society of Petrophysicists and Well-Log Analysts, 2016. [13] 王为民. 核磁共振岩石物理研究及其在石油工业中的应用[D]. 武汉:中国科学院研究生院(武汉物理与数学研究所), 2001. WANG Weimin. The physical study of nuclear magnetic resonance in rock and its application on petroleum industry[D]. Wuhan:Wuhan Institute of Physics and Mathematics(the Chinese Academy of Sciences), 2001. [14] 姚艳斌,刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1):181-189. YAO Yanbin, LIU Dameng. Petrophysical properties and fluids transportation in gas shale[J]. Journal of China Coal Society, 2018, 43(1):181-189. [15] 刘永. 基于核磁共振流态分析的页岩微纳米孔隙类型划分方法[D]. 北京:中国地质大学(北京), 2018. LIU Yong. A study of shale pore size classification by using low field nuclear magnetic resonance fluid typing method[D]. Beijing:China University of Geosciences (Beijing), 2018. [16] 雷征东,覃斌,刘双双,等. 页岩气藏水力压裂渗吸机理数值模拟研究[J]. 西南石油大学学报(自然科学版), 2017, 39(2):118-124. doi:10.11885/j.issn.1674-5086.-2015.03.11.05 LEI Zhengdong, QIN Bin, LIU Shuangshuang, et al. Imbibition mechanism of hydraulic fracturing in shale gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(2):118-124. doi:10.11885/j.issn.1674-5086.2015.03.11.05 [17] 张冲,毛志强,金燕. 基于实验室条件下的核磁共振测井束缚水饱和度计算方法研究[J]. 核电子学与探测技术, 2010, 30(4):514-518. doi:10.3969/j.issn.0258-0934.2010.04.017 ZHANG Chong, MAO Zhiqiang, JIN Yan. Experimental studies of NMR logging irreducible water saturation[J]. Nuclear Electronics & Detection Technology, 2010, 30(4):514-518. doi:10.3969/j.issn.0258-0934.2010.04.017 [18] 余旭东,康志宏,周磊,等. 核磁共振技术在页岩孔隙表征中的应用[J]. 煤炭技术, 2018, 37(5):129-131. doi:10.13301/j.cnki.ct.2018.05.049 YU Xudong, KANG Zhihong, ZHOU Lei, et al. Application of nuclear magnetic resonance in shale pore characterization[J]. Coal Technology, 2018, 37(5):129-131. doi:10.13301/j.cnki.ct.2018.05.049 [19] 张磊,石军太,张庆辉,等. 鄂尔多斯盆地东南部页岩核磁共振实验研究[J]. 煤炭学报, 2018, 43(10):2876-2885. doi:10.13225/j.cnki.jccs.2018.0051 ZHANG Lei, SHI Juntai, ZHANG Qinghui, et al. Experimental study on the nuclear magnetic resonance of shale in the southeastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(10):2876-2885. doi:10.13225/j.cnki.jccs.2018.0051 [20] 陈云燕,李小越,孙婧榕. 页岩流体参数核磁共振实验研究[J]. 化工设计通讯, 2017, 43(5):133-134, 155. doi:10.3969/j.issn.1003-6490.2017.05.123 CHEN Yunyan, LI Xiaoyue, SUN Jingrong. Experimental study on fluid parameters of shale fluid[J]. Chemical Engineering Design Communications, 2017, 43(5):133-134, 155. doi:10.3969/j.issn.1003-6490.2017.05.123 [21] 刘光法,苗锡庆. 黏土矿物水化膨胀影响因素分析[J]. 石油钻探技术, 2009, 37(5):81-84. doi:10.3969/j.issn.1001-0890.2009.05.018 LIU Guangfa, MIAO Xiqing. Influence factor analysis on hydration swelling of clay minerals[J]. Petroleum Drilling Techniques, 2009, 37(5):81-84. doi:10.3969/j.issn.1001-0890.2009.05.018 |