[1] 郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘,2016,23(1):29-43. doi:10.13745/j.esf.2016.01.003 GUO Tonglou. Discovery and characteristics of the Fuling shale Gas Field and its enlightenment and thinking[J]. Earth Science Frontiers, 2016, 23(1):29-43. doi:10.-13745/j.esf.2016.01.003 [2] 张金川,徐波,聂海宽,等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6):136-140. doi:10.-3787/j.issn.1000-0976.2008.06.040 ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6):136-140. doi:10.3787/j.issn.-1000-0976.2008.06.040 [3] 秦川,余谦,刘伟,等. 黔北地区牛蹄塘组富有机质泥岩储层特征[J]. 西南石油大学学报(自然科学版), 2017, 39(4):13-24. doi:10.11885/j.issn.1674-5086.2016.05.-12.01 QIN Chuan, YU Qian, LIU Wei, et al. Reservoir characteristics of organic-rich mudstone of Niutitang Formation in Northern Guizhou[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(4):13-22. doi:10.11885/j.issn.1674-5086.2016.05.12.01 [4] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:The mississippian barnett shale of north-central Texas as one model for thermogenic shalegas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. doi:10.1306/12190606068 [5] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103:26-31. doi:10.1016/j.coal.-2012.08.004 [6] YANG Yang, WU Kunyu, ZHANG Tingshan, et al. Characterization of the pore system in an over-mature marine shale reservoir:A case study of a successful shale gas well in southern Sichuan Basin, China[J]. Petroleum, 2015, 1(3):173-186. doi:10.1016/j.petlm.2015.07.011 [7] LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87:119-132. doi:10.1016/j.orggeochem.2015.07.010 [8] SUN Mengdi, YU Bingsong, HU Qinhong, et al. Nanoscale pore characteristics of the lower Cambrian Niutitang Formation shale:A case study from Well Yuke #1 in the Southeast of Chongqing, China[J]. International Journal of Coal Geology, 2016, 154-155:16-29. doi:10.-1016/j.coal.2015.11.015 [9] CAO Taotao, SONG Zhiguang, WANG Sibo, et al. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2015, 61:140-150. doi:10.1016/j.-marpetgeo.2014.12.007 [10] TANG Xuan, ZHANG Jinchuan, WANG Xiangzeng, et al. Shale characteristics in the southeastern Ordos Basin, China:Implications for hydrocarbon accumulation conditions and the potential of lacustrine shales[J]. International Journal of Coal Geology, 2014, 128-129:32-46. doi:10.-1016/j.coal.2014.03.005 [11] REED R M, LOUCKS R G. Low-thermal-maturity (<0.7%VR) mudrock pore systems:Mississippian Barnett Shale, southern Fort Worth Basin[J]. Gulf Coast Association of Geological Societies, 2015. [12] WANG Min, WILKINS R W T, SONG Guoqi, et al. Geochemical and geological characteristics of the Es3L lacustrine shale in the Bonan Sag, Bohai Bay Basin, China[J]. International Journal of Coal Geology, 2015, 138:16-29. doi:10.1016/j.coal.2014.12.007 [13] HAO Fang, ZOU Huayao, LU Yongchao. Mechanisms of shale gas storage:Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8):1325-1346. doi:10.1306/02141312091 [14] WANG Feiyu, GUAN Jing, FENG Weiping, et al. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6):819-824. doi:10.1016/S1876-3804(13)60111-1 [15] YANG Chao, ZHANG Jinchuan, TANG Xuan, et al. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China[J]. International Journal of Coal Geology, 2017, 171:76-92. doi:10.1016/j.coal.2016.12.001 [16] JIANG Shu, TANG Xianglu, CAI Dongsheng, et al. Comparison of marine, transitional, and lacustrine shales:A case study from the Sichuan Basin in China[J]. Journal of Petroleum Science and Engineering, 2017, 150:334-347. doi:10.1016/j.petrol.2016.12.014 [17] YANG Chao, ZHANG Jinchuan, HAN Shuangbiao, et al. Classification and the developmental regularity of organicassociated pores (OAP) through a comparative study of marine, transitional, and terrestrial shales in China[J]. Journal of Natural Gas Science and Engineering, 2016, 36:358-368. doi:10.1016/j.jngse.2016.10.044 [18] 张琴,庞正炼,刘人和,等. 辽河东部凸起太原组页岩孔隙结构特征研究[J]. 西南石油大学学报(自然科学版), 2017, 39(2):35-42. doi:10.11885/j.issn.1674-5086.2015.10.22.02 ZHANG Qin, PANG Zhenglian, LIU Renhe, et al. Pore structure characteristics of Taiyuan Formation (C3t) in Eastern Uplift of Liaohe Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(2):35-42. doi:10.11885/j.issn.1674-5086.2015.10.22.02 [19] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861. doi:10.2110/jsr.2009.092 [20] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098. doi:10.1306/-08171111061 [21] HAN Yuanjia, HORSFIELD B, WIRTH R, et al. Oil retention and porosity evolution in organic rich shales[J]. AAPG Bulletin, 2017, 101(6):807-827. doi:10.1306/-09221616069 [22] BERNARD S, WIRTH R, SCHREIBER A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103:3-11. doi:10.-1016/j.coal.2012.04.010 [23] 朱如凯,白斌,崔景伟,等. 非常规油气致密储集层微观结构研究进展[J]. 古地理学报, 2013, 15(5):615-623. doi:10.7605/gdlxb.2013.05.049 ZHU Rukai, BAI Bin, CUI Jingwei, et al. Research advances of microstructure in unconventional tight oil and gas reservoirs[J]. Journal of Palaeogeography, 2013, 15(5):615-623. doi:10.7605/gdlxb.2013.05.049 [24] KO L T, LOUCKS R G, ZHANG Tongwei, et al. Pore and pore network evolution of upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks:Results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11):1693-1722. doi:10.1306/04151615092 [25] KO L T, LOUCKS R G, RUPPEL S C, et al. Origin and characterization of Eagle Ford pore networks in the South Texas upper Cretaceous shelf[J]. AAPG Bulletin, 2017, 101(3):387-418. doi:10.1306/08051616035 [26] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2):177-200. doi:10.1306/07231212048 [27] TIAN Hui, PAN Lei, ZHANG Tongwei, et al. Pore characterization of organic-rich lower Cambrian shales in Qiannan Depression of Guizhou Province, Southwestern China[J]. Marine and Petroleum Geology, 2015, 62:28-43. doi:10.1016/j.marpetgeo.2015.01.004 [28] 曹涛涛,宋之光. 页岩有机质特征对有机孔发育及储层的影响[J]. 特种油气藏, 2016, 23(4):7-11. doi:10.3969/j.issn.1006-6535.2016.04.002 CAO Taotao, SONG Zhiguang. Effects of organic matter properties on organic pore development and reservoir[J]. Special Oil and Gas Reservoirs, 2016, 23(4):7-11. doi:10.3969/j.issn.1006-6535.2016.04.002 [29] HILL R J, ZHANG Etuan, KATZ B J, et al. Modeling of gas generation from the Barnett shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4):501-521. doi:10.-1306/12060606063 [30] YANG Feng, NING Zhengfu, WANG Qing, et al. Pore structure characteristics of lower Silurian shales in the southern Sichuan Basin, China:Insights to pore development and gas storage mechanism[J]. International Journal of Coal Geology, 2016, 156:12-24. doi:10.1016/j.coal.-2015.12.015 [31] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653. ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6):641-653. [32] 周龙刚,吴财芳. 黔西比德-三塘盆地主采煤层孔隙特征[J]. 煤炭学报, 2012, 37(11):1878-1884. doi:10.13225/j.cnki.jccs.2012.11.004 ZHOU Longgang, WU Caifang. Pore characteristics of the main coal seams in Bide-Santang Basin in Western Guizhou province[J]. Journal of China Coal Society, 2012, 37(11):1878-1884. doi:10.13225/j.cnki.jccs.2012.11.004 [33] CHALMERS G R, BUSTIN R M. The organic matter distribution and methane capacity of the lower Cretaceous strata of northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1):223-239. doi:10.1016/j.coal.2006.05.001 [34] 袁野,赵靖舟,耳闯,等. 鄂尔多斯盆地中生界及上古生界页岩孔隙类型及特征研究[J]. 西安石油大学学报(自然科学版), 2014, 29(2):14-19. doi:10.3969/j.-issn.1673-064X.2014.02.003 YUAN Ye, ZHAO Jingzhou, ER Chuang, et al. Study on types and features of the pore in Mesozoic and upper Palaeozoic shales in Ordos Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2014, 29(2):14-19. doi:10.3969/j.issn.1673-064X.2014.02.003 [35] CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6):1099-1119. doi:10.1306/10171111052 [36] 韩京,陈波,赵幸滨,等. 下扬子地区二叠系页岩有机质孔隙发育特征及其影响因素[J]. 天然气工业, 2017, 37(10):17-25. doi:10.3787/j.issn.1000-0976.2017.10.-003 HAN Jing, CHEN Bo, ZHAO Xingbin, et al. Development characteristics and influential factors of organic pores in the Permian shale in the Lower Yangtze Region[J]. Natural Gas Industry, 2017, 37(10):17-25. doi:10.3787/j.issn.-1000-0976.2017.10.003 [37] FISHMAN N S, HACKLEY P C, LOWERS H A, et al. The nature of porosity in organic-rich mudstones of the upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103:32-50. doi:10.1016/j.coal.2012.07.-012 [38] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6):916-927. doi:10.1016/j.marpetgeo.2008.06.-004 [39] 曹庆英,于冰,王丽华. 高(过)成熟干酪根结构的TEM研究[J]. 石油勘探与开发, 1995, 22(1):20-24. CAO Qingying, YU Bing, WANG Lihua. TEM study of the texture of high/over-matured kerogens[J]. Petroleum Exploration and Development, 1995, 22(1):20-24. [40] 张慧,李小彦,郝琦,等. 中国煤的扫描电子显微镜研究[M]. 北京:地质出版社, 2003. ZHANG Hui, LI Xiaoyan, HAO Qi, et al. Study on scanning electron microscopy of coal in China[M]. Beijing:Geological Publishing House, 2003. [41] YANG Chao, ZHANG Jinchuan, HAN Shuangbiao, et al. The nature and classification of organic-associated pores based on in-situ organic petrology through comparative study on marine, transitional, and lacustrine gas shales in typical areas, China[C]. AAPG/SEG International Conference and Exhibition, 2016. [42] SONDERGELD C H, RAI C S, CURTIS M E. Relationship between organic shale microstructure and hydrocarbon generation[C]//SPE Unconventional Resources Conference-USA. Society of Petroleum Engineers, 2013. doi:10.2118/164540-MS [43] LOUCKS R G, REED R M. Scanning-electron-microscope petrographic evidence for distinguishing organicmatter pores associated with depositional organic matter versus migrated organic matter in mudrock[J]. GCAGS Journal, 2014, 3:51-60. [44] ELIYAHU M, EMMANUEL S, DAY-STIRRAT R J, et al. Mechanical properties of organic matter in shales mapped at the nanometer scale[J]. Marine and Petroleum Geology, 2015, 59(59):294-304. doi:10.1016/j.marpetgeo.2014.-09.007 [45] EMMANUEL S, ELIYAHU M, DAY-STIRRAT R J, et al. Impact of thermal maturation on nano-scale elastic properties of organic matter in shales[J]. Marine and Petroleum Geology, 2016, 70:175-184. doi:10.1016/j.marpetgeo.-2015.12.001 [46] ZARGARI S, WILKINSON T M, PACKARD C E, et al. Effect of thermal maturity on elastic properties of kerogen[J]. Geophysics, 2016, 81(2):17-22. doi:10.1190/GEO2015-0194.1 [47] 王行信,蔡进功,包于进. 黏土矿物对有机质生烃的催化作用[J]. 海相油气地质, 2006, 11(3):27-38. doi:10.3969/j.issn.1672-9854.2006.03.005 WANG Xingxin, CAI Jingong, BAO Yujin. Catalysis of clay mineral to organic matter in hydrocarbon genesis[J]. Marine Origin Petroleum Geology, 2006, 11(3):27-38. doi:10.3969/j.issn.1672-9854.2006.03.005 [48] 关平,徐永昌,刘文汇. 烃源岩有机质的不同赋存状态及定量估算[J]. 科学通报, 1998(14):1556-1559. GUAN Ping, XU Yongchang, LIU Wenhui. Different occurrence state and quantitative estimation of organic matter in source rock[J]. Chinese Science Bulletin, 1998(14):1556-1559. [49] 樊馥,蔡进功,徐金鲤,等. 泥质烃源岩不同有机显微组分的原始赋存态[J]. 同济大学学报(自然科学版), 2011, 39(3):434-439. doi:10.3969/j.issn.0253-374x.-2011.03.023 FAN Fu, CAI Jingong, XU Jinli, et al. Original preservation of different organic micro-components in muddy source rock[J]. Journal of Tongji University (Natural Science), 2011, 39(3):434-439. doi:10.3969/j.issn.0253-374x.2011.03.023 [50] CARDOTT B J, LANDIS C R, CURTIS M E. Post-oil solid bitumen network in the Woodford Shale, USA:A potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139(1):106-113. doi:10.-1016/j.coal.2014.08.012 [51] HACKLEY P C, CARDOTT B J. Application of organic petrography in north American shale petroleum systems:A review[J]. International Journal of Coal Geology, 2016, 163:8-51. doi:10.1016/j.coal.2016.06.010 [52] TOPÓR T, DERKOWSKI A, ZIEMIAŃSKI P, et al. The effect of organic matter maturation and porosity evolution on methane storage potential in the Baltic Basin (Poland) shale-gas reservoir[J]. International Journal of Coal Geology, 2017, 180:46-56. doi:10.1016/j.coal.2017.07.005 [53] 曾溅辉,朱志强,吴琼,等. 烃源岩的有机酸生成及其影响因素的模拟实验研究[J]. 沉积学报, 2007, 25(6):847-851. doi:10.14027/j.cnki.cjxb.2007.06.002 ZENG Jianhui, ZHU Zhiqiang, WU Qiong, et al. Experimental study on the generation of organic acids from source rocks and its effect factors[J]. Acta Sedimentologica Sinica, 2007, 25(6):847-851. doi:10.14027/j.cnki.-cjxb.2007.06.002 [54] 秦建中,申宝剑,付小东,等. 中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力[J]. 石油与天然气地质, 2010, 31(6):826-837. doi:10.11743/ogg20100616 QIN Jianzhong, SHEN Baojian, FU Xiaodong, et al. Ultramicroscopic organic petrology and potential of hydrocarbon generation and expulsion of quality marine source rocks in South China[J]. Oil and Gas Geology, 2010, 31(6):826-837. doi:10.11743/ogg20100616 [55] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10):1621-1643. doi:10.1306/-04011312194 [56] 赵文智,王兆云,王红军,等. 再论有机质"接力成气"的内涵与意义[J]. 石油勘探与开发, 2011, 38(2):129-135. ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al. Further discussion on the connotation and significance of the nature gas relaying generation model from organic materials[J]. Petroleum Exploration and Development, 2011, 38(2):129-135. [57] KLAVER J, DESBOIS G, LITTKE R, et al. BIB-SEM pore characterization of mature and post mature Posidonia shale samples from the Hils Area, Germany[J]. International Journal of Coal Geology, 2016, 158:78-89. doi:10.1016/j.coal.2016.03.003 [58] KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in upper Devonian-lower Mississippian Woodford and Mississippian Barnett mudstones:Insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190:3-28. doi:10.1016/j.coal.2017.10.001 |