西南石油大学学报(自然科学版) ›› 2019, Vol. 41 ›› Issue (6): 139-145.DOI: 10.11885/j.issn.1674-5086.2019.09.17.06

• 页岩气开发专刊 • 上一篇    下一篇

考虑次生裂缝的页岩气藏有限导流缝网模型

方全堂1, 李政澜1, 段永刚1, 魏明强1, 张羽翼2   

  1. 1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 四川 成都 610500;
    2. 西南交通大学利兹学院, 四川 成都 611756
  • 收稿日期:2019-09-17 出版日期:2019-12-10 发布日期:2019-12-10
  • 通讯作者: 方全堂,E-mail:Fangqt@live.com
  • 作者简介:方全堂,1980年生,男,汉族,湖北洪湖人,实验员,博士,主要从事油气渗流方面的研究。E-mail:Fangqt@live.com;李政澜,1992年生,男,汉族,四川仁寿人,博士研究生,主要从事油气藏动态分析研究工作。E-mail:lizhenglanswpu@163.com;段永刚,1963年生,男,汉族,四川仁寿人,教授,博士生导师,主要从事复杂结构井渗流、试井和产能评价、完井等方面的教学及科研工作。E-mail:nanchongdyg@163.com;魏明强,1986年生,男,汉族,四川隆昌人,讲师,博士,主要从事试井及油气藏动态分析研究工作。E-mail:weiqiang425@163.com;张羽翼,1999年生,男,汉族,四川成都人,计算机应用技术专业,主要从事软件研发工作。E-mail:sc17y3z@leeds.ac.uk
  • 基金资助:
    国家科技重大专项(2016ZX05037-006);四川省科技计划重点研发项目(2018JZ0079)

The Finite-conductivity Fracture Networks Model in Shale Gas Reservoirs with Consideration of Induced Fractures

FANG Quantang1, LI Zhenglan1, DUAN Yonggang1, WEI Mingqiang1, ZHANG Yuyi2   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. Southwest Jiaotong University Leeds Joint School, Chengdu, Sichuan 611756, China
  • Received:2019-09-17 Online:2019-12-10 Published:2019-12-10

摘要: 为了考虑次生裂缝对页岩气井压力响应特征的影响,建立了耦合多重运移机制的页岩气藏有限导流缝网流动模型,并开展了压力动态特征的研究。首先,通过Laplace空间源函数、局部坐标转换及叠加原理得到耦合吸附解吸、扩散、渗流的气藏解析解。然后,基于有限差分方法及交汇单元流量分配变换,推导得到裂缝单元的数值解。耦合气藏及裂缝两部分的流动,半解析计算求解得到了考虑次生裂缝影响的压力响应曲线,并对次生裂缝组数、导流能力、裂缝角度等反映次生裂缝特征的参数进行了敏感性分析。结果表明,该模型存在10个典型流动阶段,能有效表征次生裂缝对曲线形态的影响,对页岩气压力动态特征的研究具有重要指导意义。

关键词: 页岩气藏, 次生裂缝, 压裂水平井, 有限导流, 压力动态

Abstract: In order to analyze the influence of secondary induced fractures on the pressure response of shale gas wells, a finite conductivity fracture network flow model of shale gas reservoir with coupling multiple migration mechanism has been established, and the pressure dynamic characteristics have been studied. Firstly, the analytical solution of pressure in shale gas reservoir has been obtained by employing Laplace space source function, local coordinate transformation and superposition principle. Then, based on the finite difference method and the flow distribution transformation of intersection element, the numerical solution of fracture element has been derived. By coupling the flow of gas reservoir and fracture, the pressure response curve considering the influence of secondary fracture was drawn, and the influences of characteristic parameters (such as the number of secondary fracture groups, secondary fracture angle, and fracture conductivity, etc.) were analyzed. The results show that there are 10 typical flow stages, which can effectively characterize the influence of secondary fractures. In addition, the presented model will be helpful for understanding the transient performance of multi-stage fractured horizontal wells with consideration of induced fractures.

Key words: shale gas reservoir, secondary induced fractures, fractured horizontal well, finite-conductivity, pressure performance

中图分类号: