[1] 万玉金,李熙喆,卢斌,等. Fayetteville页岩气开发实践与启示[J]. 天然气地球科学,2019,30(11):1655-1666. doi:10.11764/j.issn.1672-1926.2019.07.020 WAN Yujin, LI Xizhe, LU Bin, et al. The development of Fayetteville shale play and its implications[J]. Natural Gas Geoscience, 2019, 30(11):1655-1666. doi:10.11764/j.issn.1672-1926.2019.07.020 [2] 李国欣,罗凯,石德勤. 页岩油气成功开发的关键技术、先进理念与重要启示——以加拿大都沃内项目为例[J]. 石油勘探与开发,2020,47(4):739-749. doi:10.11698/PED.2020.04.10 LI Guoxin, LUO Kai, SHI Deqin. Key technologies, engineering management and important suggestions of shale oil/gas development:Case study of a Duvernay shale project in Western Canada sedimentary Basin[J]. Petroleum Exploration and Development, 2020, 47(4):739-749. doi:10.11698/PED.2020.04.10 [3] 赵文光,夏明军,张雁辉,等. 加拿大页岩气勘探开发现状及进展[J]. 国际石油经济,2013,21(7):41-46. doi:10.3969/j.issn.1004-7298.2013.07.007 ZHAO Wenguang, XIA Mingjun, ZHANG Yanhui, et al. Current situation and progress of shale gas exploration and development in Canada[J]. International Petroleum Economics, 2013, 21(7):41-46. doi:10.3969/j.issn.1004-7298.2013.07.007 [4] 王鹏威,谌卓恒,金之钧,等. 页岩油气资源评价参数之"总有机碳含量"的优选——以西加盆地泥盆系Duvernay页岩为例[J]. 地球科学,2019,44(2):504-512. doi:10.3799/dqkx.2018.191 WANG Pengwei, CHEN Zhuoheng, JIN Zhijun, et al. Optimizing parameter "Total Organic Carbon Content" for shale oil and gas resource assessment:Taking West Canada sedimentary Basin Devonian Duvernay Shale as an example[J]. Earth Science, 2019, 44(2):504-512. doi:10.3799/dqkx.2018.191 [5] 聂海宽,唐玄,边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报,2009,30(4):484-491. doi:10.3321/j.issn:0253-2697.2009.04.002 NIE Haikuan, TANG Xuan, BIAN Ruikang. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4):484-491. doi:10.3321/j.issn:0253-2697.2009.04.002 [6] 廖东良. 页岩气层"双甜点"评价方法及工程应用展望[J]. 石油钻探技术,2020,48(4):94-99. doi:10.11911/syztjs.2020063 LIAO Dongliang. Evaluation methods and engineering application of the feasibility of "Double Sweet Spots" in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4):94-99. doi:10.11911/syztjs.2020063 [7] 马文礼,李治平,孙玉平,等. 基于机器学习的页岩气产能非确定性预测方法研究[J]. 特种油气藏,2019,26(2):101-105. doi:10.3969/j.issn.1006-6535.2019.02.018 MA Wenli, LI Zhiping, SUN Yuping, et al. Non-deterministic shale gas productivity forecast based on machine learning[J]. Special Oil & Gas Reservoirs, 2019, 26(2):101-105. doi:10.3969/j.issn.1006-6535.2019.02.018 [8] 李庆辉,陈勉,WANG F P,等. 工程因素对页岩气产量的影响——以北美Haynesville页岩气藏为例[J]. 天然气工业,2012,32(4):54-59. doi:10.3787/j.issn.1000-0976.2012.04.013 LI Qinghui, CHEN Mian, WANG F P, et al. Influences of engineering factors on shale gas productivity:A case study from the Haynesville shale gas reservoir in North America[J]. Natural Gas Industry, 2012, 32(4):54-59. doi:10.3787/j.issn.1000-0976.2012.04.013 [9] ZHOU Q, DILMORE R, KLEIT A, et al. Evaluating gas production performance in Marcellus using data mining technologies[J]. Journal of Natural Gas Science and Engineering, 2014, 20:109-120. doi:10.1016/j.jngse.2014.06.014 [10] KONG Bing, CHEN Shengnan, CHEN Zan, et al. Bayesian probabilistic dual-flow-regime decline curve analysis for complex production profile evaluation[J]. Journal of Petroleum Science and Engineering, 2020, 195:107623. doi:10.1016/j.petrol.2020.107623 [11] 何希鹏,高玉巧,唐显春,等. 渝东南地区常压页岩气富集主控因素分析[J]. 天然气地球科学,2017,28(4):654-664. doi:j.issn.1672-1926.2017.02.013 HE Xipeng, GAO Yuqiao, TANG Xianchun, et al. Analysis of major factors controlling the accumulation in normal pressure shale gas in the southeast of Chongqing[J]. Natural Gas Geoscience, 2017, 28(4):654-664. doi:j.issn.1672-1926.2017.02.013 [12] 李彦尊,白玉湖,陈桂华,等.基于人工神经网络方法的页岩油气产量预测新技术——以美国Eagle Ford页岩油气田为例[J].中国海上油气,2020,32(4):104-110. doi:10.11935/j.issn.1673-1506.2020.04.012 LI Yanzun, BAI Yuhu, CHEN Guihua, et al. ANN method based on novel technology for production prediction of shale oil and gas:A case study in Eagle Ford[J]. China Offshore Oil and Gas, 2020, 32(4):104-110. doi:10.11935/j.issn.1673-1506.2020.04.012 [13] 王洪亮,穆龙新,时付更,等.基于循环神经网络的油田特高含水期产量预测方法[J].石油勘探与开发,2020,47(5):1-7. doi:10.11698/PED.2020.05.15 WANG Hongliang, MU Longxin, SHI Fugeng, et al. Production prediction at ultra-high water cut stage via recurrent neural network[J]. Petroleum Exploration and Development, 2020, 47(5):1-7. doi:10.11698/PED.2020.05.15 [14] WANG Shuhua, CHEN Shengnan. Insights to fracture stimulation design in unconventional reservoirs based on machine learning modeling[J]. Journal of Petroleum Science and Engineering, 2019, 174:682-695. doi:10.1016/j.petrol.2018.11.076 [15] 金之钧,胡宗全,高波,等. 川东南地区五峰组龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10. doi:10.13745/j.esf.2016.01.001 JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1):1-10. doi:10.13745/j.esf.2016.01.001 [16] ZOBACK M. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2007. [17] HUI Gang, CHEN Shengnan, CHEN Zhangxing, et al. An integrated approach to characterize hydraulic fracturing-induced seismicity in shale reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 196:107624. doi:10.1016/j.petrol.2020.107624 [18] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444. doi:10.1038/nature14539 [19] SWITZER S B, HOLLAND W G, CHRISTIE D S, et al. Devonian woodbend-winterburn strata of the Western Canada sedimentary Basin[C]. Calgary:CSPG and Alberta Research Council, 1994. [20] ROKOSH C D, LYSTER S, ANDERSO S D A, et al. Summary of Alberta's shale and siltstone-hosted hydrocarbon resource potential[R]. Energy Resources Conservation Board, 2012. [21] DUNN L, SCHMIDT G, HAMMERMASTER K, et al. The Duvernay Formation(Devonian):Sedimentology and reservoir characterization of a shale gas/liquids play in Alberta[C]. Calgary, Canada:Calgary TELUS Convention Centre & ERCB Core Research Centre, 2012. [22] MELLO M R, KOUTSOUKOS E A M, NETO E V S, et al. Geochemical and micropaleontological characterization of lacustrine and marine hypersaline environments from Brazilian basins[J]. Source Rocks in a Sequence Stratigraphic Framework, 1993, 68:17-34. [23] HUI Gang, CHEN Shengnan, GU Fei, et al. Insights on controlling factors of hydraulically induced seismicity in the Duvernay East Shale Basin[J]. Geochemistry, Geophysics, Geosystems, 2021, 22:e2020GC009563. doi:10.1029/2020GC009563 [24] EATON D W, SCHULTZ R. Increased likelihood of induced seismicity in highly overpressured shale formations[J]. Geophysical Journal International, 2018, 214(1):751-757. doi:10.1093/gji/ggy167 [25] SHEN L Y, SCHMITT D, HAUG K. Quantitative constraints to the complete state of stress from the combined borehole and focal mechanism inversions:Fox Creek, Alberta[J]. Tectonophysics, 2019, 764(10):110-123. doi:10.1016/j.tecto.2019.04.023 [26] CHOW N, WENDTE J, STASIUK L D. Productivity versus preservation controls on two organic-rich carbonate facies in the devonian of Alberta:Sedimentological and organic petrological evidence[J]. Bulletin of Canadian Petroleum Geology, 1995, 43(4):433-460. [27] WEIR R, LAWTON D C, EYRE T S, et al. Application of structural interpretation and simultaneous inversion to reservoir characterization of the Duvernay Formation, Fox Creek, Alberta, Canada[J]. The Leading Edge, 2019, 38(2):151-160. doi:10.1190/tle38020151.1 [28] PAWLEY S, SCHULTZ R, PLAYTER T, et al. The geological susceptibility of induced earthquakes in the Duvernay play[J]. Geophysical Research Letters, 2018, 45(4):1786-1793. doi:10.1002/2017GL076100 [29] HUI Gang, CHEN Shengnan, CHEN Zhangxing, et al. Investigation on two Mw 3.6 and Mw 4.1 earthquakes triggered by poroelastic effects of hydraulic fracturing operations near Crooked Lake, Alberta[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(5):e2020JB020308. doi:10.1029/2020JB020308 [30] EKPO E, EATON W D, WEIR R. Basement tectonics and fault reactivation in Alberta based on seismic and potential field data[M]. Geophysics, 2018. doi:10.5772/intechopen.72766 |