[1] 邹才能,赵群,丛连铸,等.中国页岩气的开发进展,开发潜力及发展前景[J].天然气工业, 2021, 41(1):1-14. doi:10.3787/j.issn.1000-0976.2021.01.001 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14. doi:10.3787/j.issn.1000-0976.2021.01.001 [2] 谢和平,高峰,鞠杨,等.页岩气储层改造的体破裂理论与技术构想[J].科学通报, 2016, 61(1):36-46. doi:10.1360/N972015-00262 XIE Heping, GAO Feng, JU Yang, et al. Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs[J]. Chinese Science Bulletin, 2016, 61(1):36-46. doi:10.1360/N972015-00262 [3] 郭少斌,王子龙,马啸.中国重点地区二叠系海陆过渡相页岩气勘探前景[J].石油实验地质, 2021, 43(3):377-385. doi:10.11781/sysydz202103377 GUO Shaobin, WANG Zilong, MA Xiao. Exploration prospect of shale gas with Permian transitional facies of some key areas in China[J]. Petroleum Geology&Experiment, 2021, 43(3):377-385. doi:10.11781/sysydz202103377 [4] 邹才能,潘松圻,荆振华,等.页岩油气革命及影响[J].石油学报, 2020, 41(1):1-12. ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1):1-12. [5] NEIL C W, MEHANA M, HJELM R P, et al. Reduced methane recovery at high pressure due to methane trapping in shale nanopores[J]. Communications Earth&Environment, 2020, 1(1):1-10. doi:10.1038/s43247-020-00047-w [6] WASAKI A, AKKUTLU I Y. Permeability of organicrich shale[J]. SPE Journal, 2015, 20(6):1384-1396. doi:10.2118/170830-PA [7] CHEN Zhiming, LIAO Xinwei, ZHAO Xiaoliang, et al. Development of a trilinear-flow model for carbon sequestration in depleted shale[J]. SPE Journal, 2016, 21(4):1386-1399. doi:10.2118/176153-PA [8] CHEN Zhiming, LIAO Xinwei, ZHAO Xiaoliang, et al. A new analytical method based on pressure transient analysis to estimate carbon storage capacity of depleted shales:A case study[J]. International Journal of Greenhouse Gas Control, 2015, 42:46-58. doi:10.1016/j.ijggc.2015.07.030 [9] 谭静强,张煜麟,罗文彬,等.富有机质泥页岩微纳米孔隙结构研究进展[J].矿物岩石地球化学通报,2019,38(1):1309-1324. doi:10.19658/j.issn.1007-2802.2019.38.027 TAN Jingqiang, ZHANG Yulin, LUO Wenbin, et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2019, 38(1):1309-1324. doi:10.19658/j.issn.1007-2802.2019.38.027 [10] 吴克柳,李相方,陈掌星.页岩气有机质纳米孔气体传输微尺度效应[J].天然气工业, 2016, 36(11):51-64. doi:10.3787/j.issn.1000-0976.2016.11.007 WU Keliu, LI Xiangfang, CHEN Zhangxing. Micro-scale effects of gas transport in organic nanopores of shale gas reservoirs[J]. Natural Gas Industry, 2016, 36(11):51-64. doi:10.3787/j.issn.1000-0976.2016.11.007 [11] JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8):16-21. doi:10.2118/09-08-16-DA [12] 曲鸿雁,彭岩,刘继山,等.气体吸附对页岩裂缝表观渗透率和页岩气采收率的影响[J].中国科学(技术科学), 2018, 48(8):891-900. doi:10.1360/N092017-00196 QU Hongyan, PENG Yan, LIU Jishan, et al. Impact of gas adsorption on apparent permeability of shale fracture and shale gas recovery rate[J]. Scientia Sinica Technologica, 2018, 48(8):891-900. doi:10.1360/N092017-00196 [13] 李靖,李相方,李莹莹,等.储层含水条件下致密砂岩/页岩无机质纳米孔隙气相渗透率模型[J].力学学报, 2015, 47(6):932-944. doi:10.6052/0459-1879-15-185 LI Jing, LI Xiangfang, LI Yingying, et al. Model for gas transport in nanopores of shale and tight formation under reservoir condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):932-944. doi:10.6052/0459-1879-15-185 [14] WEI Mingyao, LIU Jishan, SHI Rui, et al. Long-term evolution of coal permeability under effective stresses gap between matrix and fracture during CO2 injection[J]. Transport in Porous Media, 2019, 130(3):969-983. [15] LIU Xingxing, SHENG Jinchang, MA Chaoxin, et al. Complete coal permeability models from initial to ultimate equilibrium[J]. Fuel, 2020, 271:117612. doi:10.1016/j.fuel.2020.117612 [16] LIU Xingxing, SHENG Jinchang, LIU Jishan, et al. Evolution of coal permeability during gas injection From initial to ultimate equilibrium[J]. Energies, 2018, 11(10):2800. doi:10.3390/en11102800 [17] PENG Yan, LIU Jishan, PAN Zhejun, et al. Evolution of shale apparent permeability under variable boundary conditions[J]. Fuel, 2018, 215:46-56. doi:10.1016/j.fuel.2017.11.024 [18] ZENG Jie, LIU Jishan, LI Wai, et al. Evolution of shale permeability under the influence of gas diffusion from the fracture wall into the matrix[J]. Energy&Fuels, 2020, 34(4):4393-4406. doi:10.1021/acs.energyfuels.0c00219 [19] 李波波,陈帅,杨康,等.考虑气体传输和应力耦合作用的页岩表观渗透率演化机理[J].安全与环境学报,2021,21(1):201-209. doi:10.13637/j.issn.1009-6094.2019.0922 LI Bobo, CHEN Shuai, YANG Kang, et al. Evolutionary mechanism of the apparent permeability of the shale in regard of its gas transfer and stress coupling[J]. Journal of Safety and Environment, 2021, 21(1):201-209. doi:10.13637/j.issn.1009-6094.2019.0922 [20] 段永刚,曹廷宽,杨小莹,等.页岩储层纳米孔隙流动模拟研究[J].西南石油大学学报(自然科学版), 2015, 37(3):63-68. doi:10.11885/j.issn.1674-5086.2015.03.16.03 DUAN Yonggang, CAO Tingkuan, YANG Xiaoying, et al. Simulation of gas flow in nano-scale pores of shale gas deposits[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2015, 37(3):63-68. doi:10.11885/j.issn.1674-5086.2015.03.16.03 [21] CIVAN F. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 2010, 82(2):375-384. doi:10.1007/s11242-009-9432-z [22] REISS L H. The reservoir engineering aspects of fractured formations[M]. Paris:Gulf Publication Corporation, 1980. [23] ZENG Fanhui, PENG Fan, GUO Jianchun, et al. Gas mass transport model for microfractures considering the dynamic variation of width in shale reservoirs[J]. SPE Reservoir Evaluation&Engineering, 2019, 22(4):1265-1281. doi:10.2118/194494-PA [24] ZENG Jie, LIU Jishan, GUO Jianchun. Characterization of gas transport in shale:A multi-mechanism permeability modeling approach[J]. Chemical Engineering Journal, 2022, 438:135604. doi:10.1016/j.cej.2022.135604 [25] LIU Jishan, WANG Jianguo, CHEN Zhongwei, et al. Impact of transition from local swelling to macro swelling on the evolution of coal permeability[J]. International Journal of Coal Geology, 2011, 88(1):31-40. doi:10.1016/j.coal.2011.07.008 [26] PENG Yan, LIU Jishan, WEI Mingyao, et al. Why coal permeability changes under free swellings:New insights[J]. International Journal of Coal Geology, 2014, 133:35-46. doi:10.1016/j.coal.2014.08.011 [27] 李相方,蒲云超,孙长宇,等.煤层气与页岩气吸附/解吸的理论再认识[J].石油学报, 2014, 35(6):1113-1129. doi:10.7623/syxb201406009 LI Xiangfang, PU Yunchao, SUN Changyu, et al. Recognition of absorption/desorption theory in coalbed methane reservoir and shale gas reservoir[J]. Acta Petrolei Sinica, 2014, 35(6):1113-1129. doi:10.7623/syxb201406009 [28] CHEN Dong, PAN Zhejun, LIU Jishan, et al. Modeling and simulation of moisture effect on gas storage and transport in coal seams[J]. Energy&Fuels, 2012, 26(3):1695-1706. doi:10.1021/ef2014327 [29] PAN Z J, CONNELL L D. Modelling permeability for coal reservoirs:A review of analytical models and testing data[J]. International Journal of Coal Geology, 2012, 92:1-44. doi:10.1016/j.coal.2011.12.009 [30] CUI X, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9):1181-1202. doi:10.1306/05110504114 [31] PENG Yan, LIU Jishan, PAN Zhejun, et al. Impact of coal matrix strains on the evolution of permeability[J]. Fuel, 2017, 189:270-283. doi:10.1016/j.fuel.2016.10.086 [32] GAO Qi, HAN Songcai, CHENG Yuanfang, et al. Apparent permeability model for gas transport through micropores and microfractures in shale reservoirs[J]. Fuel, 2021, 285:119086. doi:10.1016/j.fuel.2020.119086 [33] LIU H H, RUTQVIST J. A new coal-permeability model:Internal swelling stress and fracture-matrix interaction[J]. Transport in Porous Media, 2010, 82(1):157-171. doi:10.1007/s11242-009-9442-x [34] GUO Pinkun, CHENG Yuanping, JIN Kan, et al. Impact of effective stress and matrix deformation on the coal fracture permeability[J]. Transport in Porous Media, 2014, 103(1):99-115. doi:10.1007/s11242-014-0289-4 [35] CIVAN F, RAI C S, SONDERGELD C H. Determining shale permeability to gas by simultaneous analysis of various pressure tests[J]. SPE Journal, 2012, 17(3):717-726. doi:10.2118/144253-PA [36] BESKOK A, KARNIADAKIS G E. Report:A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3(1):43-77. doi:10.1080/108939599199864 [37] 吴克柳,李相方,陈掌星,等.页岩气复杂孔裂隙真实气体传输机理和数学模型[J].中国科学(技术科学), 2016, 46(8):851-863. doi:10.1360/N092015-00345 WU Keliu, LI Xiangfang, CHEN Zhangxing, et al. Real gas transport mechanism and mathematical model through complex nanopores and microfractures in shale gas reservoirs[J]. Scientia Sinica Technologica, 2016, 46(8):851-863. doi:10.1360/N092015-00345 [38] LYU Fangtao, NING Zhengfu, WU Xiaojun, et al. A comparative study of gas transport in dry and moisturized shale matrix considering organic matter volume fraction and water distribution characteristics[J]. Journal of Petroleum Science and Engineering, 2022, 208:109483. doi:10.1016/j.petrol.2021.109483 [39] LETHAM E A. Matrix permeability measurements of gas shales:Gas slippage and adsorption as sources of systematic error[D]. Vancouver:The University of British Columbia, 2011. [40] ZIMMERMAN R W, SOMERTON W H, KING M S. Compressibility of porous rocks[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B12):12765-12777. doi:10.1029/JB091iB12p12765 |