[1] TARRAHI M. Geomechanical reservoir model calibration and uncertainty assessment from microseismic data[D]. Texas: Texas A & M University, 2015. [2] ZHANG Liehui, CHEN Zhangxin, ZHAO Yulong. Well production performance analysis for shale gas reservoirs[M]. Calgary: Elsevier, 2019. [3] TANG Huiying, WINTERFELD P H, WU Yushu, et al. Integrated simulation of multi-stage hydraulic fracturing in unconventional reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 875–892. doi: 10.1016/j.jngse.2016.11.018 [4] TANG Huiying, WANG Shihao, ZHANG Ruihan, et al. Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method[J]. Journal of Petroleum Science and Engineering, 2019, 179: 378–393. doi: 10.1016/j.petrol.2019.04.050 [5] ZHU Haiyan, TANG Xuanhe, LIU Qingyou, et al. Permeability stress-sensitivity in 4D flow-geomechanical coupling of Shouyang CBM reservoir, Qinshui Basin, China[J]. Fuel, 2018, 232: 817–832. doi: 10.1016/j.fuel.2018.05.078 [6] BRADFORD I D R, ALDRED W A, COOK J M, et al. When rock mechanics met drilling: Effective implementation of real-time wellbore stability control[C]. SPE 59121-MS, 2000. doi: 10.2118/59121-MS [7] CARNEGIE A, THOMAS M, EFNIK M S, et al. An advanced method of determining insitu reservoir stresses: Wireline conveyed micro-fracturing[C]. SPE 78486-MS, 2002. doi: 10.2118/78486-MS [8] HARDY H R. Application of acoustic emission techniques to rock mechanics research[C]. STP 35381S, 1972. doi: 10.1520/STP35381S [9] GEPHART J W, FORSYTH D W. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. Journal of Geophysical Research Solid Earth, 1984, 89(B11): 9305–9320. doi: 10.1029/JB089iB11p09305 [10] VÁCLAV V. Iterative joint inversion for stress and fault orientations from focal mechanisms[J]. Geophysical Journal International, 2014, 199(1): 69–77. doi: 10.1093/gji/ggu224 [11] THIERCELIN M J, PLUMB R A, DESROCHES J, et al. A new wireline tool for in-situ stress measurements[C]. SPE 25906-PA, 1996. doi: 10.2118/25906-PA [12] GUERRA C, FISCHER K, HENK A. Stress prediction using 1D and 3D geomechanical models of a tight gas reservoir: A case study from the Lower Magdalena Valley Basin, Colombia[J]. Geomechanics for Energy and the Environment, 2019, 19: 100113. doi: 10.1016/j.gete.2019.01.002 [13] ZHANG L L, ZUO Zibo, YE Guanlin, et al. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope[J]. Computers and Geotechnics, 2013, 48: 72–81. doi: 10.1016/j.compgeo.2012.09.011 [14] BROWN E T, HOEK E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4): 211–215. doi: 10.1016/ 0148-9062(78)91227-5 [15] FLESCH L M, HOLT W E, HAINES A J, et al. Dynamics of the Pacific-North American plate boundary in the Western United States[J]. Science, 2012, 287(5454): 834–836. doi: 10.1126/science.287.5454.834 [16] GENS A, LEDESMA A, ALONSO E E. Estimation of parameters in geotechnical backanalysis—II. Application to a tunnel excavation problem[J]. Computers and Geotechnics, 199618(1): 29–46. doi: 10.1016/0266-352X(95)00022-3 [17] MIRANDA T, DIAS D, ECLAIRCY-CAUDRON S, et al. Back analysis of geomechanical parameters by optimisation of a 3D model of an underground structure[J]. Tunnelling and Underground Space Technology, 2011, 26(6): 659–673. doi: 10.1016/j.tust.2011.05.010 [18] 杨柯,张立翔,李仲奎. 地下洞室群有限元分析的地应力场计算方法[J]. 岩石力学与工程学报,2002,21(11):1639-1644. doi: 10.3321/j.issn:1000-6915.2002.11.013 YANG Ke, ZHANG Lixiang, LI Zhongkui. New method for calculating geostresses in FEM analysis of underground houses[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(11): 1639–1644. doi: 10.3321/j.issn:1000-6915.2002.11.013 [19] 喻军华,金伟良,邹道勤. 分析初始地应力场的位移函数法[J]. 岩土力学, 2003, 24(3):417-419. doi: 10.16285/j.rsm.2003.03.022 YU Junhua, JIN Weiliang, ZOU Daoqin. Displacement function method for analyzing initial earth stress[J]. Rock and Soil Mechanics, 2003, 24(3): 417–419. doi: 10.16285/ j.rsm.2003.03.022 [20] ITO T, IGARASHI A, KATO H, et al. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method: Theoretical considerations and field-test verification[J]. Earth Planets and Space, 2006, 58(8): 963–971. doi: 10.1186/BF03352601 [21] 张社荣,胡安奎,王超,等. 基于SLR–ANN的地应力场三维智能反演方法研究[J]. 岩土力学, 2017, 38(9):2737-2745. doi: 10.16285/j.rsm.2017.09.035 ZHANG Sherong, HU Ankui, WANG Chao, et al. Threedimensional intelligent inversion method for in-situ stress field based on SLR–ANN algorithm[J]. Rock and Soil Mechanics, 2017, 38(9): 2737–2745. doi: 10.16285/j.rsm.2017.09.035 [22] NGUYEN L T, NESTOROVI T. Nonlinear kalman filters for model calibration of soil parameters for geomechanical modeling in mechanized tunneling[J]. Journal of Computing in Civil Engineering, 2016, 30(2): 04015025. doi: 10.1061/(asce)cp.1943-5487.0000495 [23] LI Shaojun, ZHAO Hongbo, RU Zhongliang, et al. Probabilistic back analysis based on Bayesian and multi-output support vector machine for a high cut rock slope[J]. Engineering Geology, 2016, 203: 178–190. doi: 10.1016/j.enggeo.2015.11.004 [24] ZHUANG D Y, MA K, TANG C A, et al. Mechanical parameter inversion in tunnel engineering using support vector regression optimized by multi-strategy artificial fish swarm algorithm[J]. Tunnelling and Underground Space Technology, 2019, 83: 425–436. doi: 10.1016/j.tust.2018.09.027 [25] BOSCH M, MUKERJI T, GONZALEZ E F. Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review[J]. Geophysics, 2010, 75(5): 75A165–75A176. doi: 10.1190/1.3478209 [26] GAO Xu, YE Chuan, JIM T C, et al. A geostatistical inverse approach to characterize the spatial distribution of deformability and shear strength of rock mass around an unlined rock cavern[J]. Engineering Geology, 2018, 245: 106–119. doi: 10.1016/j.enggeo.2018.08.007 [27] LI Heng, ZHANG Dongxiao. Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods[J]. Water Resources Research, 2007, 43(9): 1–13. doi: 10.1029/2006WR005673 [28] LEI Jun, WANG Yuesheng, GROSS D. Numerical simulation of crack deflection and penetration at an interface in a bi-material under dynamic loading by time-domain boundary element method[J]. International Journal of Fracture, 2008, 149(1): 11–30. doi: 10.1007/s10704-008-9215-5 [29] DAI Cheng, LIU Huan, WANG Yanyan, et al. A simulation approach for shale gas development in China with embedded discrete fracture modeling[J]. Marine and Petroleum Geology, 2019, 100: 519–529. doi: 10.1016/j.marpetgeo.2018.09.028 [30] XUE Liang, LI Diao, DAI Cheng, et al. Characterization of aquifer multiscale properties by generating random fractal field with truncated power variogram model using Karhunen-Loève Expansion[J]. Geofluids, 2017(7): 1–11. doi: 10.1155/2017/1361289 [31] KOUTSABELOULIS N, ZHANG Xing. 3D reservoir geomechanical modeling in oil/gas field production[C]. SPE 126095-MS, 2009. doi: 10.2118/126095-MS [32] THIERCELIN M J, PLUMB R. A core-based prediction of lithologic stress contrasts in east Texas Formations[C]. SPE 21847-PA, 1994. doi: 10.2118/21847-PA |