西南石油大学学报(自然科学版) ›› 2022, Vol. 44 ›› Issue (6): 162-174.DOI: 10.11885/j.issn.1674-5086.2020.06.21.01
钟显康1,2, 李浩男1, 扈俊颖1,2
收稿日期:
2020-06-21
出版日期:
2022-12-10
发布日期:
2023-01-16
通讯作者:
钟显康,E-mail:zhongxk@yeah.net
作者简介:
钟显康,1984年生,男,汉族,重庆人,教授,博士生导师,主要从事油气田腐蚀与防护等方面的科研与教学工作。E-mail:zhongxk@yeah.net基金资助:
ZHONG Xiankang1,2, LI Haonan1, HU Junying1,2
Received:
2020-06-21
Online:
2022-12-10
Published:
2023-01-16
摘要: 页岩气是一种清洁的能源,在许多国家的能源战略中占据重要地位。美国、加拿大等国家页岩气开发技术较为成熟,位于世界领先地位,中国等国家起步较晚,但近年来发展迅速。随着页岩气的不断开采,井下管柱、地面管线及设备的腐蚀问题不断出现,严重影响了页岩气的正常生产。页岩气勘探、开发和储运过程中都可能产生腐蚀问题,不同类型的腐蚀之间往往会相互影响,加大了腐蚀防控的难度。主要涉及的腐蚀类型有:硫酸盐还原菌腐蚀、冲刷腐蚀、CO2腐蚀、H2S腐蚀及垢下腐蚀等。针对目前页岩气生产过程中的腐蚀问题和研究现状,分析了各种腐蚀产生的原因、腐蚀机理以及防腐方法。
中图分类号:
钟显康, 李浩男, 扈俊颖. 页岩气开采与集输过程中腐蚀问题与现状分析[J]. 西南石油大学学报(自然科学版), 2022, 44(6): 162-174.
ZHONG Xiankang, LI Haonan, HU Junying. Research Progress of Corrosion During the Exploitation and Gathering-transportation Processes of Shale Gas[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(6): 162-174.
[1] 林文斌, 刘滨. 北美页岩气政策研究及启示[J]. 清华大学学报(自然科学版), 2013, 53(4):437-441, 446. doi:10.16511/j.cnki.qhdxxb.2013.04.002 LIN Wenbin, LIU Bin. North American shale gas policy research findings[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4):437-441, 446. doi:10.16511/j.cnki.qhdxxb.2013.04.002 [2] 吴西顺, 孙张涛, 舒思齐, 等. 世界页岩气发展形势及政策分析[J]. 中国矿业, 2015, 24(6):11-17, 28. doi:10.3969/j.issn.1004-4051.2015.06.004 WU Xishun, SUN Zhangtao, SHU Siqi, et al. Global shale gas development pattern and policy review[J]. China Mining Magazine, 2015, 24(6):11-17, 28. doi:10.3969/j.issn.1004-4051.2015.06.004 [3] 王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37(6):115-130. doi:10.3787/j.issn.1000-0976.2017.06.016 WANG Shiqian. Shale gas exploitation:Status, issues and prospects[J]. Natural Gas Industry, 2017, 37(6):115-130. doi:10.3787/j.issn.10000976.2017.06.016 [4] KARGBO D M, WILHELM R G, CAMPBELL D J. Natural gas plays in the marcellus shale:Challenges and potential opportunities[J]. Environmental Science & Technology, 2010, 44(15):5679-5684. doi:10.1021/es903811p [5] 杨德敏, 喻元秀, 梁睿, 等. 我国页岩气开发环境影响评价现状、问题及建议[J]. 天然气工业, 2018, 38(8):119-125. doi:10.3787/j.issn.1000-0976.2018.08.017 YANG Demin, YU Yuanxiu, LIANG Rui, et al. Environment impact appraisal (EIA) for shale gas development in China:Present status, existing issues and proposals[J]. Natural Gas Industry, 2018, 38(8):119-125. doi:10.3787/j.issn.1000-0976.2018.08.017 [6] 程涌, 陈国栋, 尹琼, 等. 中国页岩气勘探开发现状及北美页岩气的启示[J]. 昆明冶金高等专科学校学报, 2017, 33(1):16-24. doi:10.3969/j.issn.1009-0479.2017.01.004 CHENG Yong, CHEN Guodong, YIN Qiong, et al. Exploration and development status of shale gas in China and enlightenment from North American prosperous shale gas[J]. Journal of Kunming Metallurgy College, 2017, 33(1):16-24. doi:10.3969/j.issn.1009-0479.2017.01.004 [7] 游声刚, 郭茜, 吴述林, 等. 页岩气开发的环境影响因素研究综述[J]. 中国矿业, 2015, 24(5):53-57, 72. doi:10.3969/j.issn.1004-4051.2015.05.013 YOU Shenggang, GUO Qian, WU Shulin, et al. Review of environmental factors of shale gas development[J]. China Mining Magazine, 2015, 24(5):53-57, 72. doi:10.3969/j.issn.1004-4051.2015.05.013 [8] ZHANG Yimeng, YU Zhisheng, ZHANG Hongxun, et al. Microbial distribution and variation in produced water from separators to storage tanks of shale gas wells in Sichuan Basin, China[J]. Environmental Science Water Research & Technology, 2017, 3(2):340-351. doi:10.1039/c6ew00286b [9] 王华平, 张铎, 张德军, 等. 威远构造页岩气钻井技术探讨[J]. 钻采工艺, 2012, 35(2):9-11. doi:10.3969/J.ISSN.1006-768X.2012.02.03 WANG Huaping, ZHANG Duo, ZHANG Dejun, et al. Drilling technologies on shale gas in Weiyuan Structure[J]. Drilling and Production Technology, 2012, 35(2):9-11. doi:10.3969/J.ISSN.1006-768X.2012.02.03 [10] 郭彤楼, 李宇平, 魏志红. 四川盆地元坝地区自流井组页岩气成藏条件[J]. 天然气地球科学, 2011, 22(1):1-7. GUO Tonglou, LI Yuping, WEI Zhihong. Reservoir-forming conditions of shale gas in Ziliujing Formation of Yuanba Area in Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22(1):1-7. [11] 陈浩, 梁爱武, 李悦钦, 等. 井口装置的失效分析[J]. 天然气工业, 2004, 24(7):65-67. doi:10.3321/j.issn:1000-0976.2004.07.020 CHEN Hao, LIANG Aiwu, LI Yueqin, et al. Analysis of well-head facilities failure[J]. Natural Gas Industry, 2004, 24(7):65-67. doi:10.3321/j.issn:1000-0976.2004.07.020 [12] CHENG Qingli, TAO Bin, SONG Liying, et al. Corrosion behaviour of Q235B carbon steel in sediment water from crude oil[J]. Corrosion Science, 2016, 111(4):61-71. doi:10.1016/j.corsci.2016.04.045 [13] 林建, 朱国文, 孙成, 等. 金属的微生物腐蚀[J]. 腐蚀科学与防护技术, 2001, 13(5):279-284. doi:10.3969/j.issn.1002-6495.2001.05.008 LIN Jian, ZHU Guowen, SUN Cheng, et al. A review of microbiologically influenced corrosion of metals[J]. Corrosion Science and Protection Technology, 2001, 13(5):279-284. doi:10.3969/j.issn.1002-6495.2001.05.008 [14] 张小里, 刘海洪, 陈开勋, 等. 硫酸盐还原菌生长规律的研究[J]. 西北大学学报(自然科学版), 1999, 29(5):397-401. ZHANG Xiaoli, LIU Haihong, CHEN Kaixun, et al. The study of growing regulationof sulfate-reducing bacteria[J]. Journal of Northwest University (Natural Science Edition), 1999, 29(5):397-401. [15] XU Dake, LI Yingchao, GU Tingyue. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria[J]. Bioelectrochemistry, 2016, 110:52-58. doi:10.1016/j.bioelechem.2016.03.003 [16] CLUFF M A, HARTSOCK A, MACRAE J D, et al. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured marcellus shale gas wells[J]. Environmental Science and Technology, 2014, 48:6508-6517. doi:10.1021/es501173p [17] MOHAN A M, HARTSOCK A, BIBBY K J, et al. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction[J]. Environmental Science and Technology, 2013, 47(22):13141-13150. doi:10.1021/es402928b [18] 刘文士, 廖仕孟, 向启贵, 等. 美国页岩气压裂返排液处理技术现状及启示[J]. 天然气工业, 2013, 33(12):158-162. doi:10.3787/j.issn.1000-0976.2013.12.024 LIU Wenshi, LIAO Shimeng, XIANG Qigui, et al. Status quo of fracturing flowback fluids treatment technologies of US shale gas wells and its enlightenment for China[J]. Natural Gas Industry, 2013, 33(12):158-162. doi:10.3787/j.issn.1000-0976.2013.12.024 [19] 卢培利, 邱哲, 张代钧, 等. 页岩气开采返排废水有机污染物研究进展与展望[J]. 化工进展, 2018, 37(3):1161-1166. doi:10.16085/j.issn.1000-6613.2017-1302 LU Peili, QIU Zhe, ZHANG Daijun, et al. Research progress and prospect on the organic pollutants in flowback wastewater from shale gas extraction[J]. Chemical Industry and Engineering Progress, 2018, 37(3):1161-1166. doi:10.16085/j.issn.1000-6613.2017-1302 [20] 张东晓, 杨婷云. 美国页岩气水力压裂开发对环境的影响[J]. 石油勘探与开发, 2015, 42(6):801-807. doi:10.11698/PED.2015.06.14 ZHANG Dongxiao, YANG Tingyun. Environmental impacts of hydraulic fracturing in shale gas development in the United States[J]. Petroleum Exploration and Development, 2015, 42(6):801-807. doi:10.11698/PED.2015.06.14 [21] LISA C, SOPHIE L N, REBECCA A D, et al. Identification of persisitent sulfidogenic bacteria in shale gas produced waters[J]. Frontiers in Microbiology, 2020, 11:286. doi:10.3389/fmicb.2020.00286 [22] DALY R A, BORTON M A, MICHAEL J W, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales[J]. Nature Microbiology, 2016, 1(10):1-9. doi:10.1038/nmicrobiol.2016.146 [23] STRUCHTEMEYER C G, DAVIS J P, ELSHAHED M S. Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett Shale[J]. Applied and Environmental Microbiology, 2011, 77(14):4744-4753. doi:10.1128/AEM.00233-11 [24] 毛汀, 杨航, 石磊. 威远页岩气田地面管线腐蚀原因分析[J]. 石油与天然气化工, 2019, 48(5):83-86. doi:10.3969/j.issn.1007-3426.2019.05.016 MAO Ting, YANG Hang, SHI Lei. Analysis on corrosion of ground pipeline in Weiyuan Shale Gas Field[J]. Chemical Engineering of Oil & Gas, 2019, 48(5):83-86. doi:10.3969/j.issn.1007-3426.2019.05.016 [25] 熊颖, 刘雨舟, 刘友权, 等. 长宁-威远地区页岩气压裂返排液处理技术与应用[J]. 石油与天然气化工, 2016, 45(5):51-55. doi:10.3969/j.issn.1007-3426.2016.05.012 XIONG Ying, LIU Yuzhou, LIU Youquan, et al. Recycling disposal technology and application of shale gas fracturing flowback fluid in Changning-Weiyuan Area[J]. Chemical Engineering of Oil & Gas, 2016, 45(5):51-55. doi:10.3969/j.issn.1007-3426.2016.05.012 [26] 郑雅慧, 唐善法, 蒲明政, 等. 涪陵页岩气采出水处理技术研究[J]. 当代化工, 2018, 47(11):2405-2408, 2412. doi:10.13840/j.cnki.cn21-1457/tq.2018.11.042 ZHENG Yahui, TANG Shanfa, PU Mingzheng, et al. Study on treatment technology of produced water from Fuling shale gas development[J]. Contemporary Chemical Industry, 2018, 47(11):2405-2408, 2412. doi:10.13840/j.cnki.cn21-1457/tq.2018.11.042 [27] KUHR W C, VLUGT L S. De grafiteering van gietijzer als electrobiochemich proces in anaerobe gronden[J]. Water, 1934, 18:147-165. [28] KUHR W C, VLUGT L S. The graphitization of cast iron as an electrobiochemical process in anaerobic soil[J]. Water, 1964:AD0617552. [29] 黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展[J]. 微生物学通报, 2017, 44(7):1699-1713. doi:10.13344/j.microbiol.china.170197 HUANG Ye, LIU Shuangjiang, JIANG Chengying. Microbiologically influenced corrosion and mechanisms[J]. Microbiology China, 2017, 44(7):1699-1713. doi:10.13344/j.microbiol.china.170197 [30] GASPAR J, MATHIEU J, YANG Y, et al. Microbial dynamics and control in shale gas production[J]. Environmental Science and Technology Letters, 2014, 1(12):465-473. doi:10.1021/ez5003242 [31] 宋绍富, 张铜祥, 王玉罡, 等. 油田杀菌工艺及杀菌剂研究进展[J]. 石油化工应用, 2012, 31(3):1-5. doi:10.3969/j.issn.1673-5285.2012.03.001 SONG Shaofu, ZHANG Tongxiang, WANG Yugang, et al. Research progress of sterilization process and bactericides used in oilfield[J]. Petrochemical Industry Application, 2012, 31(3):1-5. doi:10.3969/j.issn.1673-5285.2012.03.001 [32] DONG Zehua, LIU Tao, LIU Hongfang. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27(5):487-495. doi:10.1080/08927014.2011.584369 [33] LIU Hongwei, FU Chaoyang, GU Tingyue, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corrosin Science, 2015, 100:484-495. doi:10.1016/j.corsci.2015.08.023 [34] JIN Juntao, WU Guangxue, ZHANG Zhenhua, et al. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresource Technology, 2014, 165:162-165. doi:10.1016/j.biortech.2014.01.117 [35] STRUCHTEMEYER C G, MORRISON M D, ELSHAHED M S. A critical assessment of the efficacy of biocides used during the hydraulic fracturing process in shale natural gas wells[J]. International Biodeterioration and Biodegradation, 2012, 71:15-21. doi:10.1016/j.ibiod.2012.01.013 [36] 史显波, 徐大可, 闫茂成, 等. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2):153-162. doi:10.11900/0412.1961.2016.00143 SHI Xianbo, XU Dake, YAN Maocheng, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels[J]. Acta Metallurgica Sinica, 2017, 53(2):153-162. doi:10.11900/0412.1961.2016.00143 [37] 何树全, 吴亚楠, 刘宏伟, 等. 抗菌材料抑制油田微生物腐蚀的作用机理探讨[J]. 石油化工腐蚀与防护, 2016, 33(1):1-4. doi:10.3969/j.issn.1007-015X.2016.01.001 HE Shuquan, WU Ya'nan, LIU Hongwei, et al. Exploration of mechanisms of antimicrobial material to inhibit microbiologically induced corrosion in oil field[J]. Corrosion & Protection in Petrochemical Industry, 2016, 33(1):1-4. doi:10.3969/j.issn.1007-015X.2016.01.001 [38] 王娟, 燕永利, 杨志刚. 页岩气压裂返排液处理过程中的腐蚀防护技术[J]. 表面技术, 2016, 45(8):63-67. doi:10.16490/j.cnki.issn.1001-3660.2016.08.011 WANG Juan, YAN Yongli, YANG Zhigang. Corrosion protection technology in the treatment of fracturing flow-back fluid of shale gas[J]. Surface Technology, 2016, 45(8):63-67. doi:10.16490/j.cnki.issn.1001-3660.2016.08.011 [39] 彭刚. 紫外线杀菌技术在杨家坝污水处理系统中的应用[J]. 内蒙古石油化工, 2009, 35(17):97-98. PENG Gang. Application of ultraviolet sterilization technology in Yangjiaba sewage treatment system[J]. Inner Mongolia Petrochemical Industry, 2009, 35(17):97-98. [40] 陈野. 硫酸盐还原菌腐蚀的影响因素及其防治方法[D]. 大连:大连理工大学, 2004. doi:10.7666/d.y666574 CHEN Ye. Study on influence factorsand control methods of corrosion caused by sulfate-reducing bacteria[D]. Dalian:Dalian University of Technology, 2004. doi:10.7666/d.y666574 [41] 张弛, 刘轩. 超声波杀菌在水质净化中的研究[J]. 科技与创新, 2019(5):98-99. doi:10.15913/j.cnki.kjycx.2019.05.098 ZHANG Chi, LIU Xuan. Study on ultrasonic sterilization in water purification[J]. Science and Technology & Innovation, 2019(5):98-99. doi:10.15913/j.cnki.kjycx.2019.05.098 [42] 徐麟博, 雷富强, 陈浩东, 等. 反硝化抑制油田采出水中SRB的效果研究[J]. 云南化工, 2020, 47(1):39-41. doi:10.3969/j.issn.1004-275X.2020.001.015 XU Linbo, LEI Fuqiang, CHEN Haodong, et al. Effect of denitrification on SRB in oilfield produced water[J]. Yunnan Chemical Technology, 2020, 47(1):39-41. doi:10.3969/j.issn.1004-275X.2020.001.015 [43] 姜歆. 含油污水处理系统中硫酸盐还原菌抑制技术试验研究[D]. 哈尔滨:哈尔滨工业大学, 2008. doi:10.7666/d.D269717 JIANG Xin. Study on the restrain technology of sulfate reducing bacteria in oily wastewater treatment system[D]. Harbin:Harbin Institute of Technology, 2008. doi:10.7666/d.D269717 [44] 金鹏康, 杨珍瑞, 李蓉, 等. 反硝化抑制硫酸盐还原的工艺特性[J]. 环境科学, 2017, 38(5):1982-1990. doi:10.13227/j.hjkx.201611097 JIN Pengkang, YANG Zhenrui, LI Rong, et al. Characteristics of denitrification inhibiting sulfate reducing process[J]. Environmental Science, 2017, 38(5):1982-1990. doi:10.13227/j.hjkx.201611097 [45] 曾莉. 管道弯管段冲刷腐蚀机理与流体动力学特征[D]. 武汉:华中科技大学, 2017. doi:10.7666/d.D01313614 ZENG Li. Erosion-corrosion mechanism and hydrodynamic characteristics of at an elbow of pipelines[D]. Wuhan:Huazhong University of Science and Technology, 2017. doi:10.7666/d.D01313614 [46] 谢明, 吴贵阳, 张强. 长宁页岩气含砂介质冲蚀问题研究[C]. 福州:全国天然气学术年会, 2018. doi:10.26914/c.cnkihy.2018.002617 XIE Ming, WU Guiyang, ZHANG Qiang. Study on erosion of sand-bearing media in changning shale gas[C]. Fuzhou:National Natural Gas Academic Annual Meeting, 2018. doi:10.26914/c.cnkihy.2018.002617 [47] 朱娟, 张乔斌, 陈宇, 等. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3):199-210. doi:10.11902/1005.4537.2013.151 ZHU Juan, ZHANG Qiaobin, CHEN Yu, et al. Progress of study on erosion-corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(3):199-210. doi:10.11902/1005.4537.2013.151 [48] MENG H, HU X, NEVILLE A. A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design[J]. Wear, 2007, 263(1-6):355-362. doi:10.1016/j.wear.2006.12.007 [49] FLORES J F, NEVILLE A, KAPUR A, et al. An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs[J]. Wear, 2009, 267(1-4):213-222. doi:10.1016/j.wear.2008.11.015 [50] ILEVBARE G O, BURSTEIN G T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels[J]. Corrosion Science, 2001, 43(3):485-513. doi:10.1016/S0010-938X(00)00086-X [51] WU X Q, JING H M, ZHENG Y G, et al. Resistance of Mo-bearing stainless steels and Mo-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion[J]. Corrosion Science, 2004, 46(4):1013-1032. doi:10.1016/S0010-938X(03)00192-6 [52] BARKER K C, BALL A. Synergistic abrasive corrosive wear of chromium-containing steels[J]. British Corrosion Journal, 1989, 24(3):222-228. doi:10.1179/000705989798270036 [53] 杨帆, 郑玉贵, 姚治铭, 等. 铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为[J]. 中国腐蚀与防护学报, 1999, 19(4):207-213. YANG Fan, ZHENG Yugui, YAO Zhiming, et al. Study on erosion-corrosion behavior of Cu-Ni alloy BFe30-1-1 in flowing artificial seawater[J]. Journal of Chinese Society for Corrosion and Protection, 1999, 19(4):207-213. [54] ZHONG Xiankang, SHANG Tan, ZHANG Chenfeng, et al. In situ study of flow accelerated corrosion and its mitigation at different locations of a gradualcontraction of N80 steel[J]. Journal of Alloys and Compouds, 2020, 824:153947. doi:10.1016/j.jallcom.2020.153947 [55] TANG X, XU L Y, CHENG Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry II:Synergism of erosion and corrosion[J]. Corrosion Science, 2008, 50(5):1469-1474. doi:10.1016/j.corsci.2008.01.019 [56] 庞可. 涪陵一钻井平台发生气体溢泄, 已控制无人员伤亡[EB/OL].[2020-06-21]. http://cq.cqnews.net/html/2013-04/15/content_25568448.htm. PANG Ke. Gas spill occurred on Fuling No.1 drilling platform, and no casualties have been controlled[EB/OL].[2020-06-21]. http://cq.cqnews.net/html/2013-04/15/content_25568448.htm. [57] 刘然克. 典型H2S/CO2环空环境下高强油套管钢应力腐蚀机理与防护[D]. 北京:北京科技大学, 2015. LIU Ranke. Stress corrosion cracking behavior and prevention of high strength tubing steels in typical H2S/CO2 annulus environments[D]. Beijing:University of Science and Technology Beijing, 2015. [58] 艾志鹏. 页岩气井井下节流工艺的研究与应用[D]. 成都:西南石油大学, 2015. AI Zhipeng. Research and application of downhole throttling technology in shale gas well[D]. Chengdu:Southwest Petroleum University, 2015. [59] 补艳. 页岩气井口装置泄漏风险及安全防护研究[D]. 重庆:重庆科技学院, 2017. BU Yan. Study on leakage risk and safety protection of shale gas wellhead equipment[D]. Chongqing:Chongqing University of Science and Technology, 2017. [60] 余勇, 周志斌, 杨绪甲, 等. 涪陵页岩气脱碳技术的研究[J]. 气体净化, 2019, 19(6):24-26. YU Yong, ZHOU Zhibin, YANG Xujia, et al. Study on decarburization technology of Fuling Shale Gas[J]. Gas Purification, 2019, 19(6):24-26. [61] 周长林, 彭欢, 桑宇, 等. 页岩气CO2泡沫压裂技术[J]. 天然气工业, 2016, 36(10):70-76. doi:10.3787/j.issn.1000-0976.2016.10.009 ZHOU Changlin, PENG Huan, SANG Yu, et al. CO2 foam fracturing technology in shale gas development[J]. Natural Gas Industry, 2016, 36(10):70-76. doi:10.3787/j.issn.1000-0976.2016.10.009 [62] REYNOLD M M, BACHMAN R C, PETERS W E. A comparison of the effectiveness of various fracture fluid systems used in multistage fractured horizontal wells:Montney Formation, unconventional gas[C]. SPE 168632, 2014. doi:10.2118/168632-MS [63] 张广东, 周文, 吉尚策, 等. CO2分子置换法开采页岩气实验[J]. 成都理工大学学报(自然科学版), 2015, 42(3):366-371. doi:10.3969/j.issn.1671-9727.2015.03.14 ZHANG Guangdong, ZHOU Wen, JI Shangce, et al. Experimental study on CO2 replacement method used in shale gas exploration[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(3):366-371. doi:10.3969/j.issn.1671-9727.2015.03.14 [64] 邓文良. 酸性气井环空腐蚀行为及防护技术研究[D]. 成都:西南石油大学, 2015. DENG Wenliang. Research on annular corrosion behavior and protection technology of acid gas well[D]. Chengdu:Southwest Petroleum University, 2015. [65] MORSI K M. Studies reveal best installation, coatings for desert gathering lines[J]. Oil and Gas Journal, 1998, 26(5):46-52. [66] 吴国华. 高含CO2气田的腐蚀机理及防控对策研究[J]. 天然气与石油, 2019, 37(2):96-102. doi:10.3969/j.issn.1006-5539.2019.02.016 WU Guohua. Corrosion in natural gas treatment plant of gasfield with high CO2 and its prevention[J]. Natural Gas and Oil, 2019, 37(2):96-102. doi:10.3969/j.issn.10065539.2019.02.016 [67] CAO Shan, HE Faqing, GAO Jinwei. Corrosion problems in the oil country tubular goods and their mitigation:A review[J]. Anti-Corrosion Methods and Materials, 2017, 64(5):465-478. doi:10.1108/ACMM-09-2016-1708 [68] 王晶, 栾春波. 硫化氢腐蚀对X80管线钢断裂韧性的影响[J]. 材料研究学报, 2016, 30(3):179-185. doi:10.11901/1005.3093.2015.429 WANG Jing, LUAN Chunbo. Effect of hydrogen sulfide corrosion on fracture toughness of X80 pipeline steel[J]. Chinese Journal of Materials Research, 2016, 30(3):179-185. doi:10.11901/1005.3093.2015.429 [69] 陆廷清, 胡明, 刘墨翰, 等. 川南地区海相页岩气中发现微量硫化氢[J]. 中国地质, 2018, 45(4):859-860. doi:10.12029/gc20180418 LU Tingqing, HU Ming, LIU Mohan, et al. The discovery of hydrogen sulfide-bearing marine shale gas in Southern Sichuan[J]. Geology in China, 2018, 45(4):859-860. doi:10.12029/gc20180418 [70] SHEN Yanan, BUICK R. The antiquity of microbial sulfate reduction[J]. Earth-science Reviews, 2004, 64(3-4):243-272. doi:10.1016/S0012-8252(03)00054-0 [71] MACHEL H G, KROUSE H R, SASSEN R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry, 1995, 10(4):373-389. doi:10.1016/0883-2927(95)00008-8 [72] LIANG Renxing, DAVIDOVA I A, MARKS C R, et al. Metabolic capability of a predominant halanaerobium sp. in hydraulically fractured gas wells and its implication in pipeline corrosion[J]. Frontiers in microbiology, 2016, 7:988. doi:10.3389/fmicb.2016.00988 [73] PIRZADEH P, LESAGE K L, MARRIOTT R A. Hydraulic fracturing additives and the delayed onset of hydrogen sulfide in shale gas[J]. Energy & Fuels, 2014, 28(8):4993-5001. doi:10.1021/ef501059k [74] NIXON S L, WALKER L, STREETS M D T, et al. Guar gum stimulates biogenic sulfide production at elevated pressures:Implications for shale gas extraction[J]. Frontiers in Microbiology, 2017, 8:1-11. doi:10.3389/fmicb.2017.00679 [75] XIONG Qi, HU Junying, GU Chenrong, et al. The study of under deposit corrosion of carbon steel in the flowback water during shale gas production[J]. Applied Surface Science, 2020, 523:1-10. doi:10.1016/j.apsusc.2020.146534 [76] 于航. 沉积物对产出水中Q235钢腐蚀行为的影响[D]. 哈尔滨:哈尔滨工程大学, 2016. doi:10.7666/d.D01106008 YU Hang. Effect of deposite to the corrosion behavior of Q235 steel in produced water[D]. Harbin:Harbin Engineering University, 2016. doi:10.7666/d.D01106008 [77] 崔丽芬. 设备垢下腐蚀的形成及预防[J]. 化工管理, 2019(24):144. doi:10.3969/j.issn.1008-4800.2019.24.096 CUI Lifen. Formation and prevention of corrosion under equipment scale[J]. Chemical Enterprise Management, 2019(24):144. doi:10.3969/j.issn.1008-4800.2019.24.096 [78] 张登庆, 胡宏萍. 集输管线垢下腐蚀的闭塞效应研究[J]. 油气田地面工程, 2002, 21(5):15-16. doi:10.3969/j.issn.1006-6896.2002.05.011 ZHANG Dengqing, HU Hongping. Research on blocking effect of corrosion under scale in gathering and transportation pipeline[J]. Oil Gas Field Surface Engineering, 2002, 21(5):15-16. doi:10.3969/j.issn.1006-6896.2002.05.011 [79] 贾恒磊, 赵春平, 汪浩, 等. 管线的氧浓差电池现象[J]. 管道技术与设备, 2012(3):51-52. doi:10.3969/j.issn.1004-9614.2012.03.019 JIA Henglei, ZHAO Chunping, WANG Hao, et al. Oxygen concentration battery phenomenon in pipeline[J]. Pipeline Technique and Equipment, 2012(3):51-52. doi:10.3969/j.issn.1004-9614.2012.03.019 [80] 杨长华. 涪陵页岩气田管道泄漏风险分析及预防措施[J]. 中国石油和化工标准与质量, 2019, 39(2):70-72. doi:10.3969/j.issn.1673-4076.2019.02.033 YANG Changhua. Risk analysis and preventive measures of pipeline leakage in Fuling Shale Gas Field[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(2):70-72. doi:10.3969/j.issn.1673-4076.2019.02.033 |
[1] | 覃建华, 杨琨, 丁艺, 张博宁, 唐慧莹. 基于KL-E的地质力学模型参数反演及应用[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 65-78. |
[2] | 白杨, 李道雄, 李文哲, 李宏波, 罗平亚. 长宁区块龙马溪组水平段井壁稳定钻井液技术[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 79-88. |
[3] | 梁兴, 单长安, 蒋佩, 张朝, 朱斗星. 浅层页岩气井全生命周期地质工程一体化应用[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 1-18. |
[4] | 惠钢, 陈胜男, 王海, 顾斐. 基于改进残差的神经网络方法预测页岩气甜点[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 19-32. |
[5] | 李俊乾, 卢双舫, 李文镖, 蔡建超. 基于过程分析法的页岩原位含气性评价[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 42-55. |
[6] | 盛广龙, 黄罗义, 赵辉, 饶翔, 马嘉令. 页岩气藏压裂缝网扩展流动一体化模拟技术[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 84-96. |
[7] | 陈学忠, 鲁友常, 吴易一, 马丽丽. 中美页岩气开采压裂返排液处置政策分析及启示[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 212-219. |
[8] | 李郑涛, 张震, 吴鹏程, 马天寿, 付建红. 川南深层各向异性页岩井壁失稳力学机理[J]. 西南石油大学学报(自然科学版), 2021, 43(4): 11-25. |
[9] | 李皋, 李泽, 蒋祖军, 于浩, 何龙. 页岩-液体作用对套管变形的影响研究[J]. 西南石油大学学报(自然科学版), 2021, 43(1): 103-110. |
[10] | 乐宏, 杨兆中, 范宇. 宁209井区裂缝控藏体积压裂技术研究与应用[J]. 西南石油大学学报(自然科学版), 2020, 42(5): 86-98. |
[11] | 梁洪彬, 张烈辉, 陈满, 赵玉龙, 向祖平. 快速评价页岩含气量的新方法[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 110-117. |
[12] | 张德平, 马锋, 吴雨乐, 董泽华. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103-109. |
[13] | 陈立超, 王生维, 张典坤, 郭丁丁, 任龙锋. 陇东地区煤层气井油管柱腐蚀机理研究[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 170-180. |
[14] | 范宇, 钟成旭, 牟乃渠, 金鑫, 吴鹏程. 一种生物合成基钻井液在长宁气田的应用[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 133-139. |
[15] | 张烈辉, 崔乾晨, 谢军, 郑健, 李成勇. 页岩气藏压裂水平井线性耦合渗流模型研究[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||