Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2024, Vol. 46 ›› Issue (1): 64-75.DOI: 10.11885/j.issn.1674-5086.2022.06.13.02
• OIL AND GAS ENGINEERING • Previous Articles Next Articles
LIU Rui1,2, CHEN Zezhou2, GAO Shi3, PU Wanfen1,2,4, DU Daijun2
Received:
2022-06-13
Published:
2024-02-01
CLC Number:
LIU Rui, CHEN Zezhou, GAO Shi, PU Wanfen, DU Daijun. Research Progress on Functionalization Nanocarbons for Enhanced Oil Recovery[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(1): 64-75.
[1] WANG Jianliang, FENG Liangyong, STEVE M, et al. China's unconventional oil: A review of its resources and outlook for long-term production[J]. Energy, 2015, 82: 31–42. doi: 10.1016/j.energy.2014.12.042 [2] 周亚洲,王德民,王志鹏,等. 多孔介质中孔喉级别乳状液的形成条件及黏弹性[J]. 石油勘探与开发, 2017, 44(1):110-116. doi:10.11698/PED.2017.01.13 ZHOU Yazhou, WANG Demin, WANG Zhipeng, et al. The formation and viscoelasticity of pore-throat scale emulsion in porous media[J]. Petroleum Exploration and Development, 2017, 44(1): 110–116. doi: 10.11698/PED.2017.01.13 [3] SUN Jinsheng, DU Weichao, PU Xiaolin, et al. Synthesis and evaluation of a novel hydrophobically associating polymer based on acrylamide for enhanced oil recovery[J]. Chemical Papers, 2015, 69(12): 1598–1607. doi: 10.1515/chempap-2015-0185 [4] FAN Haiming, ZHENG Tong, CHEN Haolin, et al. Viscoelastic surfactants with high salt tolerance, fast-dissolving property, and ultralow interfacial tension for chemical flooding in offshore oilfields[J]. Journal of Surfactants and Detergents, 2018, 21(4): 475–488. doi: 10.1002/jsde.12042 [5] 丁彬,熊春明,耿向飞,等. 致密油纳米流体增渗驱油体系特征及提高采收率机理[J]. 石油勘探与开发, 2020, 47(4):756-764. doi: 10.11698/PED.2020.04.12 DING Bin, XIONG Chunming, GENG Xiangfei, et al. Characteristics and EOR mechanisms of nanofluids permeation flooding for tight oil[J]. Petroleum Exploration and Development, 2020, 47(4): 756–764. doi: doi:10.11698/PED.2020.04.12 [6] 余海棠,邓雄伟,刘艳梅,等. 致密油储层渗吸驱油用纳米流体研究[J]. 断块油气田, 2022, 29(5):604-608. doi:10.6056/dkyqt202205005 YU Haitang, DENG Xiongwei, LIU Yanmei, et al. Research of nanofluids suitable for imbibition and oil displacement in tight oil reservoirs[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 604–608. doi: 10.6056/dkyqt202205005 [7] 许康宁,丁彬,吴伟,等. 致密油藏孔隙结构对纳米流体驱油效果的影响[J]. 油田化学, 2022, 39(3):444-448, 454. doi:10.19346/j.cnki.1000-4092.2022.03.011 XU Kangning, DING Bin, WU Wei, et al. Influence of pore structure of tight reservoir on oil displacement effect of nano fluid[J]. Oilfield Chemistry, 2022, 39(3): 444–448, 454. doi: 10.19346/j.cnki.1000-4092.2022.03.011 [8] 张小军,郭继香,高晨豪,等. 纳米颗粒增强提高采收率应用进展[J]. 油田化学, 2022, 39(1):186-190. doi:10.19346/j.cnki.1000-4092.2022.01.031 ZHANG Xiaojun, GUO Jixiang, GAO Chenhao, et al. Application of nanoparticles augmented enhanced oil recovery[J]. Oilfield Chemistry, 2022, 39(1): 186–190. doi: 10.19346/j.cnki.1000-4092.2022.01.031 [9] 张磊,张贵才,蒋平,等. 纳米材料在油田开发中的应用[J]. 材料导报,2015, 29(13):72-76. doi:10.11896/j.issn.1005-023X.2015.013.013 ZHANG Lei, ZHANG Guicai, JIANG Ping, et al. Applications of nanomaterials in oilfield development[J]. Materials Reports, 2015, 29(13): 72–76. doi: 10.11896/j.issn.1005-023X.2015.013.013 [10] 朱红,夏建华,孙正贵,等. 纳米二氧化硅在三次采油中的应用研究[J]. 石油学报,2006,27(6):96-100. doi:10.3321/j.issn:0253-2697.2006.06.021 ZHU Hong, XIA Jianhua, SUN Zhenggui, et al. Application of nanometer-silicon dioxide in tertiary oil recovery[J]. Acta Petrolei Sinica, 2006, 27(6): 96–100. doi: 10.3321/j.issn:0253-2697.2006.06.021 [11] 魏兵,陈神根,赵金洲,等. 纳米纤维高稳泡沫在裂缝中的生成和运移规律[J]. 石油学报, 2020, 41(9):1135-1145. doi:10.7623/syxb202009010 WEI Bing, CHEN Shengen, ZHAO Jinzhou, et al. Formation and migration laws of nanofiber-based high-stability foam in fractures[J]. Acta Petrolei Sinica, 2020, 41(9): 1135–1145. doi: 10.7623/syxb202009010 [12] 麦西默·马卡西奥,弗朗西斯科·保卢奇. 富勒烯、石墨烯和碳纳米管制备与应用[M]. 李克训,乔妙杰,马晨, 译. 北京:国防工业出版社, 2020. MARCACCIO M, PAOLUCCI F. Making and exploiting fullerences, graphene, and carbon nanotubes[M]. LI Kexun, QIAO Miaojie, MA Chen, trans. Beijing: National Defense Industry Press, 2020. [13] 吴红军,李志达,谷笛,等. 电化学转化二氧化碳制备碳纳米材料及表征[J]. 东北石油大学学报, 2016, 40(2):85-89, 98. doi:10.3969/i.issn.2095-4107.2016.02.011 WU Hongjun, LI Zhida, GU Di, et al. Preparation and characterization of carbon nanomaterials by electrochemical conversion of carbon dioxide[J]. Journal of Northeast Petroleum University, 2016, 40(2): 85–89, 98. doi: 10.3969/i.issn.2095-4107.2016.02.011 [14] 裴海华,单景玲,曹旭,等. 纳米颗粒稳定乳状液提高原油采收率研究进展[J]. 材料导报, 2021, 35(13):13227-13231. doi:10.11896/cldb.20050023 PEI Haihua, SHAN Jingling, CAO Xu, et al. Research progresses on nanop-article stabilized emulsions for enhanced oil recovery[J]. Materials Reports, 2021, 35(13):13227–13231. doi: 10.11896/cldb.20050023 [15] CHEN Changlong, WANG Shuoshi, KADHUM M J, et al. Using carbonac-eous nanoparticles as surfactant carrier in enhanced oil recovery: A laboratory study[J]. Fuel, 2018, 222: 561–568. doi: 10.1016/j.fuel.2018.03.002 [16] 吴景春,石芳,赵阳,等. 功能性纳米驱油剂研究进展[J]. 东北石油大学学报, 2020, 44(5):70-75. doi:10.3969/i.issn.2095-4107.2020.05.001 WU Jingchun, SHI Fang, ZHAO Yang, et al. Research progress of functional nano-oil displacement agents[J]. Journal of Northeast Petroleum University, 2020, 44(5): 70–75. doi: 10.3969/i.issn.2095-4107.2020.05.001 [17] ELYADERANI S M G, JAFARI A, RAZAVINEZHAD J. Experimental investing-ation of mechanisms in functionalized multiwalled carbon nanotube flooding for enhancing the recovery from heavy-oil reservoir[J]. SPE Journal, 2019, 24(6): 2681–2694. doi: 10.2118/194499-PA [18] CHATURBEDY P, MATTE H S S R, Voggu R, et al. Self-assembly of C60, SWNTs and few-layer graphene and their binary composites at the organic–aqueous interface[J]. Journal of Colloid and Interface Science, 2011, 360: 249–255. doi: 10.1016/j.jcis.2011.04.088 [19] KROTO H W, HEATH J R, O'BRIEN S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318: 162–163. doi: 10.1038/318162a0 [20] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56–58. doi: 10.1038/354056a0 [21] REICH S, THOMSEN C, MAULTZSCH J. Carbon nanotubes: Basic concepts and physical properties[M]. Wernheim: Wiley-VCH Press, 2004. doi: 10.1007/s00396-004-1180-6 [22] LIU Jie, RINZLER A G, DAI Hongjie, et al. Fullerene pipes[J]. Science, 1998, 280: 1253–1256. doi: 10.1126/science.280.5367.1253 [23] 杨全红,张辰,孔德斌. 石墨烯化学剥离和组装[M]. 北京:科学出版社, 2020. YANG Quanhong, ZHANG Chen, KONG Debin. Graphenes: Chemical exfoliation and assembly[M]. Beijing: Science Press, 2020. [24] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896 [25] AMOS M, SHINJI Y, KAZUYUKI F. Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers[J]. Applied Physics Letters, 2011, 99(12): 121107. doi: 10.1063/1.3641419 [26] YI Min, SHEN Zhigang. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700–11715. doi: 10.1039/c5ta00252d [27] CIESIELSKI A, SAMORI P. Graphene via sonication assisted liquid-phase exfoliation[J]. Chemical Society Reviews, 2013, 43(1): 381–398. doi: 10.1039/c3cs60217f [28] ZHENG Jian, DI Chongan, LIU Yunqi, et al. High-quality graphene with large flakes exfoliated by oleyl amine[J]. Chemical Communications, 2010, 46(31): 5728–5730. doi: 10.1039/c0cc00954g [29] LU Jiong, YANG Jiaxiang, WANG Junzhong, et al. Onepot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8): 2367–2375. doi: 10.1021/nn900546b [30] LIU Na, LUO Fang, WU Haoxi, et al. One-step ionicliquid-assisted electrochemical synthesis of ionic-liquidfunctionalized graphene sheets directly from graphite[J]. Advanced Functional Materials, 2008, 18(10): 1518-1525. doi: 10.1002/adfm.200700797 [31] MCALLISTER M J, LI J, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 2007, 19(18): 4396–4404. doi: 10.1021/cm0630800 [32] YANG Xiaoyin, DOU Xi, ROUHANIPOUR A, et al. Two-dimensional graphene nanoribbons[J]. Journal of the American Chemical Society, 2008, 130: 4216–4217. doi: 10.1021/ja710234t [33] CHEN Zongping, REN Wencai, GAO Libo, et al. Threedimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424–428. doi: 10.1038/nmat3001 [34] ZHU Yanwu, MURALI S, CAI Weiwei. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906–3924. doi: 10.1002/adma.201001068 [35] LI Xuesong, CAI Weiwei, AN Jinho, et al. Large-area synthesis of highquality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312–1314. doi: 10.1126/science.1171245 [36] LIANG Feng, SADANA A K, PEERA A, et al. A convenient route to functionalized carbon nanotubes[J]. Nano Letters, 2004, 4(7): 1257–1260. doi: 10.1021/nl049428c [37] KRAETSCHMER W, LAMB L D. Solid C60: A new form of carbon[J]. Nature, 1990, 347(6291): 354. doi: 10.1038/347354a0 [38] YADIENKA M, GUAN Jinwen, LIN Shuqiong, et al. Rapid and controllable covalent functionalization of single-walled carbon nanotubes at room tem-perature[J]. Chemical Communications, 2007, 48: 5146–5148. doi: 10.1039/b712299c [39] KELLY K F, BILLUPS W E. Synthesis of soluble graphite and graphene[J]. Accounts of Chemical Research, 2013, 46(1): 4–13. doi: 10.1021/ar300121q [40] LUO Dan, WANG Feng, ZHU Jingyi, et al. Secondary oil recovery using graphene-based amphiphilic Janus nanosheet fluid at an ultralow-concentration[J]. Industrial & Engineering Chemistry Research, 2017, 56: 11125-11132. doi: 10.1021/acs.iecr.7b02384 [41] 欧霄巍. 基于共价键的氧化石墨烯LBL膜的组装及其在有机场效应晶体管中的应用[D]. 北京:中国科学院大学, 2013. OU Xiaowei. The assembly of graphene oxide LBL film based on covalent bonds and its application in organic field-effect transistors[D]. Beijing: University of Chinese Academy of Sciences, 2013. [42] YIN Taiheng, YANG Zihao, LIN Meiqin, et al. Preparation of janus nanosheets via reusable cross-linked polymer microspheres template[J]. Chemical Engineering Journal, 2019, 371: 507–515. doi: 10.1016/j.cej.2019.04.093 [43] ISLAM M F, ROJAS E, BERGEY D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nano Letters, 2003, 3(2): 269–273. doi: 10.1021/nl025924u [44] MOORE V C, STRANO M S, HAROZ E H, et al. Individually suspended single-walled carbon nanotubes in various surfactants[J]. Nano Letters, 2003, 3(10): 1379-1382. doi: 10.1021/nl034524j [45] KIM J, COTE L J, HUANG Jiaxing. Two-dimensional soft material: New faces of graphene oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1356–1364. doi: 10.1021/ar300047s [46] SHAO Jiaojing, LV Wei, YANG Quanhong. Self-assembly of graphene oxide at interfaces[J]. Advances Materials, 2014, 26(32): 5586–5612. doi: 10.1002/adma.201400267 [47] KIM J K, HAN H T, LEE S H, et al. Graphene oxide liquid crystals[J]. Angewandte Chemie International Edition, 2011, 50(13): 3043–3047. doi: 10.1002/anie.201004692 [48] ALI M F, HAMID R S. Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation[J]. Petroleum, 2020, 6(2): 115–122. doi: 10.1016/j.petlm.2019.09.003 [49] JAMES J S. Status of surfactant EOR technology[J]. Petroleum, 2015, 1(2): 97–105. doi: 10.1016/j.petlm.2015.07.003 [50] 吴伟鹏,侯吉瑞,屈鸣,等. 2-D智能纳米黑卡微观驱油机理可视化实验[J]. 油田化学, 2020, 37(1):133-137. doi:10.19346/j.cnki.10004092.2020.01.023 WU Weipeng, HOU Jirui, QU Ming, et al. Microscopic flooding mechanism experiment visualization of 2-D smart black nano-card[J]. Oilfield Chemistry, 2020, 37(1): 133–137. doi: 10.19346/j.cnki.1000-4092.2020.01.023 [51] ARAIN Z U A, AL-ANSSARI S, ALIA M, et al. Reversible and irreversible adsorption of bare and hybrid silica nanoparticles onto carbonate surface at reservoir condition[J]. Petroleum, 2020, 6(3): 277–285. doi: 10.1016/j.petlm.2019.09.001 [52] 周泽南,吴一宁,刘逸飞,等. 自分散活性纳米SiO2油水界面吸附规律及其稳定的乳状液调流机制[C]. 无锡:第十七届全国胶体与界面化学学术会议, 2019. ZHOU Zenan, WU Yining, LIU Yifei, et al. Absorption of self-dispersing active nano SiO2 at oil-water interface and profile control capability of the nano particles stabilized emulsion[C]. Wuxi: The 17th National Colloid and Interface Chemistry Academic Conference, 2019. [53] HUANG Caili, FORTH J, WANG Weiyu, et al. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants[J]. Nature Nanotechnology, 2017, 12: 1060–1063. doi: 10.1038/nnano.2017.182 [54] ZHANG Tiantian, MURPHY M J, YU Haiyang, et al. Investigation of nanoparticle adsorption during transport in porous media[J]. SPE Journal, 2015, 20(4): 667–677. doi: 10.2118/166346-PA [55] ZHANG Lei, JIANG Cheng, KHAN N, et al. Efficient preparation of nano-starch particles and its mechanism of enhanced oil recovery in low-permeability oil reservoirs[J]. SPE Journal, 2021, 26(3): 1422–1435. doi: 10.2118/203831-PA [56] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society, 1805, 95: 65-87. [57] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546–551. doi: 10.1039/tf9444000546 [58] 张景 楠,田磊,张红 卫. 纳米 流体 强化 驱油 机理 研究进展[J]. 油田化学, 2021, 38(1):184-190. doi:10.19346/j.cnki.1000-4092.2021.01.034 ZHANG Jingnan, TIAN Lei, ZHANG Hongwei. Research progress of enhancing oil recovery mechanism by using nanofluids[J]. Oilfield Chemistry, 2021, 38(1): 184–190. doi: 10.19346/j.cnki.1000-4092.2021.01.034 [59] NOSONOVSKY M, BHUSHAN B. Biologically inspired surfaces: Broadening the scope of roughness[J]. Advanced Functional Materials, 2008, 18(6): 843–855. doi: 10.1002/adfm.200701195 [60] NOSONOVSKY M, BHUSHAN B. Biomimetic superhydrophobic surfaces: Multiscale approach[J]. Nano Letters, 2007, 7(9): 2633–2637. doi: 10.1021/nl071023f [61] DENKOVA P S, TCHOLAKOVA S, DENKOV N D, et al. Evaluation of the precision of drop-size determination in oil/water emulsions by low-resolution NMR spectroscopy[J]. Langmuir, 2004, 20(26): 11402–11413. doi: 10.1021/la048649v [62] 刘洪国,孙德军,郝金诚. 新编胶体与界面化学[M]. 北京:化学工业出版社, 2016. LIU Hongguo, SUN Dejun, HAO Jincheng. New edition of colloid and interface chemistry[M]. Beijing: Chemical Industry Press, 2016. [63] 刘鸣华,陈鹏磊,张莉. 界面组装化学[M]. 北京:化学工业出版社, 2020. LIU Minghua, CHEN Penglei, ZHANG Li. Interface assembly chemistry[M]. Beijing: Chemical Industry Press,2020. [64] 孙盈盈,岳湘安,张立娟,等. 乳化作用对水驱后残余油膜效果的实验与评价[J]. 新疆石油地质, 2014, 35(1):73-76. SUN Yingying, YUE Xiang'an, ZHANG Lijuan, et al. Effect of emulation on displacement of residual oil film following water flooding: Experiment and evaluation[J]. Xinjiang Petroleum Geology, 2014, 35(1): 73–76. [65] REZAEI N, FIROOZABADI A. Macro-and microscale water flooding performances of crudes which form w/o emulsions upon mixing with brines[J]. Energy & Fuels, 2014, 28(3): 2092–2103. doi: 10.1021/ef402223d [66] LIU Zheyu, LI Yiqiang, LUAN Huoxin, et al. Pore scale and macroscopic visual displacement of oil-in-water emulsions for enhanced oil recovery[J]. Chemical Engineering Science, 2019, 197: 404–414. doi: 10.1016/j.ces.2019.01.001 [67] LI Junjian, JIANG Hangqiao, WANG Chuan, et al. Porescale investigation of microscopic remaining oil variation characteristics in water-wet sandstone using CT scanning[J]. Journal of Natural Gas Science and Engineering, 2017, 48: 36–45. doi: 10.1016/j.jngse.2017.04.003 [68] 游梦婷. 核磁共振空间分辨谱方法对乳状液形成过程的实时监控研究[D]. 厦门: 厦门大学, 2017. YOU Mengting. Monitoring the formation of oil-water emulsions with spatially resolved NMR spectroscopy methods[D]. Xiamen: Xiamen University, 2017. [69] QI Pengpeng, DANIEL H E, KOH H, et al. Reduction of residual oil saturation in sandstone cores by use of viscoelastic polymers[J]. SPE Journal, 2017, 22(2): 447–458. doi: 10.2118/179689-PA [70] KHORAMIAN R, RAMAZANI S A A, HEKMATZADEH M, et al. Graphene oxide nanosheets for oil recovery[J]. ACS Applied Nano Materials, 2019, 2(9): 5730-5742. doi: 10.1021/acsanm.9b01215 [71] LUO Dan, WANG Feng, ZHU Jingyi, et al. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration[J]. Proceeding of the National Academy of Sciences of the United States of America, 2016, 113: 7711-7716. doi: 10.1073/pnas.1608135113 [72] ALNARABIJI M S, HUSEIN M M. Application of bare nanoparticle-based nanofluids in enhanced oil recovery[J]. Fuel, 2020, 267: 117262. doi: 10.1016/j.fuel.2020.117262 [73] LIU Rui, GAO Shi, PENG Qin, et al. Experimental and molecular dynamic studies of amphiphilic graphene[J]. Fuel, 2022, 330: 125567. doi: 10.1016/j.fuel.2022.125567 [74] GAN Shiyu, ZHONG Lijie, WU Tongshun, et al. Spontaneous and fast growth of large-area craphene nanofilms facilitated by oil/water interfaces[J]. Advanced Materials, 2012, 24(29): 3958–3964. doi: 10.1002/adma.201201098 [75] PEI Haihua, ZHANG Guicai, GE Jijiang, et al. Investigation of synergy between nanoparticle and surfactant in stabilizing oil-in-water emulsions for improved heavy oil recover[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484: 478–484. doi: 10.1016/j.colsurfa.2015.08.025 [76] LIU Rui, LU Yuanyuan, PU Wanfen, et al. Low-energy emulsification of oil-in-water emulsions with selfregulating mobility via a nanoparticle surfactant[J]. Industrial and Engineering Chemistry Research, 2020, 59(41): 18396–18411. doi: 10.1021/acs.iecr.0c03153 [77] LIU Yigang, LIU Changlong, LI Yanyue, et al. Experimental study of an amphiphilic graphene oxide based nanofluid for chemical enhanced oil recovery of heavy oil[J]. New Journal of Chemistry, 2023, 47(4): 1945–1953. doi: 10.1039/D2NJ03802A [78] 顾春元,狄勤丰,沈琛,等. 疏水纳米颗粒在油层微孔道中的吸附机制[J]. 石油勘探与开发, 2011, 38(1):84-89. GU Chunyuan, DI Qinfeng, SHEN Chen, et al. Adsorption of hydrophobic nanoparticles in reservoir microchannells adsorption of hydrophobic nanoparticles in reservoir microchannels[J]. Petroleum Exploration and Development, 2011, 38(1): 84–89. [79] 罗健辉,杨恩海,肖沛文,等. 纳米驱油技术理论与实践[J]. 油田化学, 2020, 37(1):669-674. doi:10.19346/j.cnki.1000-4092.2020.04.018 LUO Jianhui, YANG Enhai, XIAO Peiwen, et al. Nanofluid flooding technology: Theory and practice[J]. Oilfield Chemistry, 2020, 37(1): 669–674. doi: 10.19346/j.cnki.1000-4092.2020.04.018 [80] YUAN Qingqing, XUE Han, LÜ Jianyong, et al. Sizedependent interfacial assembly of graphene oxide at water-oil interfaces[J]. The Journal of Physical Chemistry B, 2020, 124(23): 4835–4842. doi: 10.1021/acs.jpcb.0c02687 [81] PANG Shishi, PU Wanfen, XIE Jianyong, et al. Investigation into the properties of water-in-heavy oil emulsion and its role in enhanced oil recovery during water flooding[J]. Journal of Petroleum Science and Engineering, 2019, 177: 798–807. doi: 10.1016/j.petrol.2019.03.004 [82] GANLEY W J, DUIJNEVELDT J S V. Steady-state droplet size in montmorillonite stabilised emulsions[J]. Soft Matter, 2016, 12: 6481–6489. doi: 10.1039/c6sm01377e [83] ORUC S, CELIK F, VEFA A M. Effect of cement on emulsified asphalt mixtures[J]. Journal of Materials Engineering and Performance, 2007, 16(5): 578–583. doi: 10.1007/s11665-007-9095-2 [84] LIU Rui, LU Jiayue, PU Wanfen, et al. Synergetic effect between in-situ mobility control and micro-displacement for chemical enhanced oil recovery (CEOR) of a surfaceactive nanofluid[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108983. doi: 10.1016/j.petrol.2021.108983 [85] COTE L, KIM F, HUANG Jiaxing. Langmuir-Blodget assembly of graphite oxide single layers[J]. Journal of the American Chemical Society, 2009, 131(3): 1043–1049. doi: 10.1021/ja806262m [86] WEI Bing, LI Qinzhi, NING Jian, et al. Macro-and microscale observations of a surface-functionalized nanocellulose based aqueous nanofluids in chemical enhanced oil recovery (C-EOR)[J]. Fuel, 2019, 263: 1321–1333. doi: 10.1016/j.fuel.2018.09.105 [87] POUYA T, SEYED R S, FARZAN H, et al. Effects of synthesized nanoparticles and Henna-Tragacanth solutions on oil/water interfacial tension: Nanofluids stability considerations[J]. Petroleum, 2022, 6(3): 293–303. doi: 10.1016/j.petlm.2020.03.001 [88] DAI Caili, WANG Xinke, LI Yuyang, et al. Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores[J]. Energy & Fuels, 2017, 31(3): 2663–2668. doi: 10.1021/acs.energyfuels.6b03244 [89] WASAN D T, NIKOLOV A D. Spreading of nanofluids on solids[J]. Nature, 2003, 423: 156–159. doi: 10.1038/nature01591 [90] CAO Jie, CHEN Yingpeng, WANG Xiujun, et al. Janus sulfonated graphene oxide nanosheets with excellent interfacial properties for enhanced oil recovery[J]. Chemical Engineering Journal, 2022, 443: 136391. doi: 10.1016/j.cej.2022.136391 [91] CHEN Lifeng, ZHU Xiaoming, WANG Lei, et al. Experimental study of effective amphiphilic graphene oxide flooding for an ultralow-permeability reservoir[J]. Energy & Fuels, 2018, 32: 11269–11278. doi: 10.1021/acs.energyfuels.8b02576 [92] OGOLO N A, OLAFUYI O A, ONYEKONWU M O. Enhanced oil recovery using nanoparticles[C]. SPE 160847- MS, 2012. doi: 10.2118/160847-MS [93] 宣扬,蒋官澄,黎凌,等. 高性能纳米降滤失剂氧化石墨烯的研制与评价[J]. 石油学报, 2013, 34(5):1010-1016. doi:10.7623/syxb201305025 XUAN Yang, JIANG Guancheng, LI Ling, et al. Preparation and evaluation of nano-graphene oxide as a highperformance fluid loss additive[J]. Acta Petrolei Sinica, 2013, 34(5): 1010–1016. doi: 10.7623/syxb201305025 [94] 杨景斌,侯吉瑞,屈鸣,等. 2-D智能纳米黑卡在低渗透油藏中的驱油性能评价[J]. 油田化学, 2020, 37(2):305-310. doi:10.19346/j.cnki.1000-4092.2020.02.021 YANG Jingbin, HOU Jirui, QU Ming, et al. Evaluation of oil displacement performance of two-dimensional smart black nano-card in low permeability reservoir[J]. Oilfield Chemistry, 2020, 37(2): 305–310. doi: 10.19346/j.cnki.1000-4092.2020.02.021 [95] LIU Rui, XU Yingxue, PU Wanfen, et al. Oligomeric ethylene-glycol brush functionalized graphene oxide with exceptional interfacial properties for versatile applications[J]. Applied Surface Science, 2022, 606: 154856. doi: 10.1016/j.apsusc.2022.154856t |
[1] | LIU Jiali, HUANG Siyuan, JIANG Qi, WANG Hongyuan, WANG Zhongyuan. A Study on Improving Heavy Oil Recovery by Solvent Assisted Steam Flooding in Late Stage [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(3): 98-108. |
[2] | ZHANG Chenjun, JIN Xu, YUAN Bin, ZHANG Lei, ZHENG Shaojing. Research Progress, Challenge and Prospect of Nanoscale Oil-displacing Materials for Enhanced Oil Recovery [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(1): 55-70. |
[3] | LI Chenxi, KANG Botao, ZHANG Xu, GAO Yihua, CHEN Guoning. Quantitative Characterization of Sand Body Connectivity in Deepwater Turbidite Channel Reservoir [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(6): 10-20. |
[4] | ZHOU Haiyan, ZHANG Yunlai, HE Yifan, MIAO Feifei. A Study on Profile Control and Flooding Performance of New Crosslinked Polymer Microspheres [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(6): 175-182. |
[5] | CHEN Yiwei, ZHOU Yuhui, LIANG Chenggang, XU Tianlu, HE Yongqing. Quantitative Characterization Model of Shale Oil Horizontal Well Production Change [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 97-103. |
[6] | FU Jing, YAO Bowen, LEI Zhengdong, TIAN Ye, WU Yushu. Enhanced Oil Recovery of Ultra-low Permeability Tight Reservoirs in North America [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 166-183. |
[7] | WANG Dacheng, LIU Yikun, BAI Junhui, FU Qingchun, CHEN Fen. Architecture Characterization and Fluid Migration Mechanism of Composite Point Dam in Meandering River [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 25-36. |
[8] | LI Yibo, HE Tianshuang, HU Zhiming, LI Yalong, PU Wanfen. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 101-110. |
[9] | HE Jingang, YUAN Lin. The Technology of “Adjustment + Displacement + Water Plugging + Fracturing” Using Polymer-surfactant Agent After Polymer Flooding [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 165-174. |
[10] | XIE Ribin, LI Haitao, YANG Yong, LIU Yuanzhi, QU Changwei. Fine Characterization of Reef Limestone Reservoirs in Pearl River Mouth Basin, South China Sea [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(2): 23-35. |
[11] | WEI Bing, LIU Jiang, ZHANG Xiang, PU Wanfen. Advances of Enhanced Oil Recovery Method and Theory in Tight Reservoirs [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 91-102. |
[12] | LI Chenxi, WANG Yaqing, YANG Xipu, BU Fanqing, DUAN Ruikai. Quantitative Characterization of the Reservoir Structural Stacking Relationship in the Deep-water Turbidite Channel [J]. 西南石油大学学报(自然科学版), 2020, 42(4): 37-46. |
[13] | LU Fengming, WU Xi, ZHU Hongyun, ZHANG Yang, WANG Rui. Quantitative Characterization Method and Application of Reservoir Flow Field [J]. 西南石油大学学报(自然科学版), 2020, 42(4): 111-120. |
[14] | ZHANG Deping, MA Feng, WU Yule, DONG Zehua. Optimization of Injection Technique of Corrosion Inhibitor in CO2-flooding Oil Recovery [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103-109. |
[15] | WANG Yanwei, LIU Huiqing, DONG Xiaohu, ZHANG Qichen. Physical Simulation of Cold Recovery of Edge Water Heavy Oil Reservoir After Steam Stimulation [J]. 西南石油大学学报(自然科学版), 2020, 42(1): 91-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||