Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2023, Vol. 45 ›› Issue (1): 55-70.DOI: 10.11885/j.issn.1674-5086.2022.04.27.03
• OIL AND GAS ENGINEERING • Previous Articles Next Articles
ZHANG Chenjun1, JIN Xu1, YUAN Bin2, ZHANG Lei3, ZHENG Shaojing4
Received:
2022-04-27
Published:
2023-02-24
CLC Number:
ZHANG Chenjun, JIN Xu, YUAN Bin, ZHANG Lei, ZHENG Shaojing. Research Progress, Challenge and Prospect of Nanoscale Oil-displacing Materials for Enhanced Oil Recovery[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(1): 55-70.
[1] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[EB/OL].[2022-03-28]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202202/t20220228_1827971.html. National Bureau of Statistics. Statistical communique of the People's Republic of China on national economic and social development in 2021[EB/OL].[2022-03-28]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202202/t20220228_1827971.html. [2] 刘合,金旭,丁彬. 纳米技术在石油勘探开发领域的应用[J]. 石油勘探与开发,2016,43(6):1014-1021. doi:10.11698/PED.2016.06.20 LIU He, JIN Xu, DING Bin. Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6):1014-1021. doi:10.11698/PED.2016.06.20 [3] 雷群,罗健辉,彭宝亮,等. 纳米驱油剂扩大水驱波及体积机理[J]. 石油勘探与开发,2019,46(5):937-942. doi:10.11698/PED.-2019.05.12 LEI Qun, LUO Jianhui, PENG Baoliang, et al. Mechanism of expanding swept volume by nano-sized oil-displacement agent[J]. Petroleum Exploration and Development, 2019, 46(5):937-942. doi:10.11698/PED.2019.05.12 [4] MADHAN A, GUO Kun, YU Zhixin. A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery[J]. Applied Sciences, 2018, 8(6):871. doi:10.3390/app8060871 [5] RAFATI R, SMITH S R, HADDAD A S, et al. Effect of nanoparticles on the modifications of drilling fluids properties:A review of recent advances[J]. Journal of Petroleum Science and Engineering, 2018, 161:61-76. doi:10.1016/j.petrol.2017.11.067 [6] 金旭,李国欣,孟思炜,等. 陆相页岩油可动用性微观综合评价[J]. 石油勘探与开发,2021,48(1):222-232. doi:10.11698/PED.2021.01.21 JIN Xu, LI Guoxin, MENG Siwei, et al. Microscale comprehensive evaluation of continental shale oil recoverability[J]. Petroleum Exploration and Development, 2021, 48(1):222-232. doi:10.11698/PED.2021.01.21 [7] ZHANG Chenjun, JIN Xu, TAO Jiaping, et al. Comparison of nanomaterials for enhanced oil recovery in tight sandstone reservoir[J]. Frontiers in Earth Science, 2021, 9:746071. doi:10.3389/feart.2021.746071 [8] FLETCHER A, DAVIS J. How EOR can be transformed by nanotechnology[C]. SPE 129531-MS, 2010. doi:10.2118/129531-MS [9] UDOH T H. Improved insight on the application of nanoparticles in enhanced oil recovery process[J]. Scientific African, 2021, 13:e00873. doi:10.1016/j.sciaf.2021.e00873 [10] 丁彬,熊春明,耿向飞,等. 致密油纳米流体增渗驱油体系特征及提高采收率机理[J]. 石油勘探与开发,2020,47(4):756-764. doi:10.11698/PED.2020.04.12 DING Bin, XIONG Chunming, GENG Xiangfei, et al. Characteristics and EOR mechanisms of nanofluids permeation flooding for tight oil[J]. Petroleum Exploration and Development, 2020, 47(4):756-764. doi:10.11698/PED.2020.04.12 [11] GIRALDO J, BENJUMEA P, LOPERA S, et al. Wettability alteration of sandstone cores by alumina-based nanofluids[J]. Energy & Fuels, 2013, 27(7):3659-3665. doi:10.1021/ef4002956 [12] NGO I, SASAKI K, NGUELE R, et al. Formation damage induced by water-based alumina nanofluids during enhanced oil recovery:Influence of postflush salinity[J]. ACS Omega, 2020, 5(42):27103-27112. doi:10.1021/acsomega.0c02473 [13] OGOLO N A, OLAFUYI O A, ONYEKONWU M O. Enhanced oil recovery using nanoparticles[C]. SPE 160847-MS, 2012. doi:10.2118/160847-MS [14] KARIMI A, FAKHROUEIAN Z, BAHRAMIAN A, et al. Wettability alteration in carbonates using zirconium oxide nanofluids:EOR implications[J]. Energy & Fuels, 2012, 26(2):1028-1036. doi:10.1021/ef201475u [15] MOSLAN M S, SULAIMAN W R W, ISMAIL A R, et al. Wettability alteration of dolomite rock using nanofluids for enhanced oil recovery[J]. Materials Science Forum, 2016, 864:194-198. doi:10.4028/www.scientific.net/MSF.864.194 [16] EHTESABI H, AHADIAN M M, TAGHIKHANI V, et al. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids[J]. Energy & Fuels, 2014, 28(1):423-430. doi:10.1021/ef401338c [17] EHTESABI H, AHADIAN M M, TAGHIKHANI V. Enhanced heavy oil recovery using TiO2 nanoparticles:Investigation of deposition during transport in core plug[J]. Energy & Fuels, 2015, 29(1):1-8. doi:10.1021/ef5015605 [18] NASSAR N N, HASSAN A, VITALE G. Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles[J]. Applied Catalysis A:General, 2014, 484:161-171. doi:10.1016/j.apcata.2014.07.017 [19] HOSSEINPOUR N, KHODADADI A A, BAHRAMIAN A, et al. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology[J]. Langmuir, 2013, 29(46):14135-14146. doi:10.1021/la402979h [20] HAROUN M, HASSAN S AI, ANSARI A, et al. Smart Nano-EOR process for Abu Dhabi carbonate reservoirs[C]. SPE 162386-MS, 2012. doi:10.2118/162386-MS [21] YI S, BABADAGLI T, LI H A. Use of nickel nanoparticles for promoting aquathermolysis reaction during cyclic steam stimulation[C]. SPE 186102-PA, 2017. doi:10.2118/186102-PA [22] 黄佳,江航,赵长虹,等. 复配纳米催化剂在稠油降黏中的应用及其机理[J]. 中国粉体技术,2020,26(1):68-74. doi:10.13732/j.issn.1008-5548.2020.01.011 HUANG Jia, JIANG Hang, ZHAO Changhong, et al. Effects and mechanism of combined nano-catalysts on viscosity reduction of heavy oil[J]. China Powder Science and Technology, 2020, 26(1):68-74. doi:10.13732/j.issn.1008-5548.2020.01.011 [23] DAI Caili, WANG Xinke, LI Yuyang, et al. Spontaneous imbibition investigation of self-dispersing silica nanofluids for enhanced oil recovery in low-permeability cores[J]. Energy & Fuels, 2017, 31(3):2663-2668. doi:10.1021/acs.energyfuels.6b03244 [24] KUMAR INTURI S, RANJAN DASH G, KODAVATY J. Role of silica Nano particles in altering rheological properties of drilling fluid in enhanced oil recovery[J]. Materials Today:Proceedings, 2019, 17(4):354-361. doi:10.1016/j.matpr.2019.06.442 [25] RAGAB A M, HANNORA A E. An experimental investigation of silica nano particles for enhanced oil recovery applications[C]. SPE 175829-MS, 2015. doi:10.2118/175829-MS [26] JU Binshan, FAN Tailiang, MA Mingxue. Enhanced oil recovery by flooding with hydrophilic nanoparticles[J]. China Particuology, 2006, 4(1):41-46. doi:10.1016/S1672-2515(07)60232-2 [27] PILLAI P, SAW R K, SINGH R, et al. Effect of synthesized lysine-grafted silica nanoparticle on surfactant stabilized O/W emulsion stability:Application in enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2019, 177:861-871. doi:10.1016/j.petrol.2019.03.007 [28] ZHANG T, ROBERTS M, BRYANT S L, et al. Foams and emulsions stabilized with nanoparticles for potential conformance control applications[C]. SPE 121744-MS, 2009. doi:10.2118/121744-MS [29] ZHANG T, DAVIDSON D, BRYANT S L, et al. Nanoparticle-stabilized emulsions for applications in enhanced oil recovery[C]. SPE 129885-MS, 2010. doi:10.2118/129885-MS [30] AFIFI H R, MOHAMMADI S, DERAZI A M, et al. Enhancement of smart water-based foam characteristics by SiO2 nanoparticles for EOR applications[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 627:127143. doi:10.1016/j.colsurfa.2021.127143 [31] SUN Q, LI Z, WANG J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2015, 471:54-64. doi:10.1016/j.colsurfa.2015.02.007 [32] YEKEEN N, MANAN M A, IDRIS A K, et al. Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles[J]. Journal of Petroleum Science & Engineering, 2017, 159:115-134. doi:10.1016/j.petrol.2017.09.021 [33] GUO F, ARYANA S. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery[J]. Fuel, 2016, 186(15):430-442. doi:10.1016/j.fuel.2016.08.058 [34] ZHANG Yusong, LIU Qi, YE Hang, et al. Nanoparticles as foam stabilizer:Mechanism, control parameters and application in foam flooding for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 202:108561. doi:10.1016/j.petrol.2021.108561 [35] LI S, YANG K, LI Z, et al. Properties of CO2 foam stabilized by hydrophilic nanoparticles and nonionic surfactants[J]. Energy & Fuels, 2019, 33(6):5043-5054. doi:10.1021/acs.energyfuels.9b00773 [36] TIAN Qinyu, WANG Lushan, TANG Yanyan, et al. Research and application of nano polymer microspheres diversion technique of deep fluid[C]. SPE 156999-MS, 2012. doi:10.2118/156999-MS [37] 陈渊,孙玉青,李飞鹏,等. 纳米微球深部调驱技术在河南油田的应用[J]. 石油钻采工艺,2012,34(3):87-90. doi:10.3969/j.issn.1000-7393.2012.03.021 CHEN Yuan, SUN Yuqing, LI Feipeng, et al. Application of nanosphere deep profile control and displacement technology in He'nan Oilfield[J]. Oil Drilling and Production Technology, 2012, 34(3):87-90. doi:10.3969/j.issn.1000-7393.2012.03.021 [38] 吴天江,郑明科,周志平,等. 低渗透油藏纳米微球调驱剂封堵性评价新方法[J]. 断块油气田,2018,25(4):498-501. doi:10.6056/dkyqt201804019 WU Tianjiang, ZHENG Mingke, ZHOU Zhiping, et at. New method for plugging performance evaluation of polymeric nanospheres in low permeability reservoir[J]. Fault-Block Oil and Gas Field, 2018, 25(4):498-501. doi:10.6056/dkyqt201804019 [39] 路建萍,沈燕宾,王佳,等. 纳米微球技术在油田领域的研究进展及应用[J]. 应用化工,2020,49(3):768-772. doi:10.16581/j.cnki.issn1671-3206.20200110.010 LU Jianping, SHEN Yanbin, WANG Jia, et al. Research progress and application of nanosphere technology in oilfield[J]. Applied Chemical Industry, 2020, 49(3):768-772. doi:10.16581/j.cnki.issn1671-3206.20200110.010 [40] 李翔,瞿瑾,鞠野,等. 纳米聚合物微球的封堵性及驱油性能[J]. 化学工业与工程,2021,38(3):57-63. doi:10.13353/j.issn.1004.9533.20201006 LI Xiang, QU Jin, JU Ye, et al. Plugging property and oil displacement performance of nanoscale polymer microspheres[J]. Chemical Industry and Engineering, 2021, 38(3):57-63. doi:10.13353/j.issn.1004.9533.20201006 [41] HENDRANINGRAT L, ZHANG J. Polymeric nanospheres as a displacement fluid in enhanced oil recovery[J]. Applied Nanoscience, 2015, 5(8):1009-1016. doi:10.1007/s13204-014-0399-x [42] 孟令韬,王彦玲,许宁,等. 一种低渗油藏深部调驱用聚合物纳米微球的制备与性能研究[J]. 应用化工,2021,50(7):1757-1760. doi:10.3969/j.issn.1671-3206.2021.07.003 MENG Lingtao, WANG Yanling, XU Ning, et al. Study on preparation and performance of polymer nanospheres for deep profile control and flooding in low permeability reservoir[J]. Applied Chemical Industry, 2021, 50(7):1757-1760. doi:10.3969/j.issn.1671-3206.2021.07.003 [43] WANG Lei, ZHANG Guicai, GE Jijiang, et al. Preparation of microgel nanospheres and their application in EOR[C]. SPE 130357-MS, 2010. doi:10.2118/130357-MS [44] 张勇. 海上Q油田聚合物微球在线深部调剖技术研究与应用[J]. 石油化工应用,2016,35(8):19-24. doi:10.3969/j.issn.1673-5285.2016.08.005 ZHANG Yong. The Bohai offshore oilfield polymer microspheres online deep profile control technology research and application[J]. Petrochemical Industry Application, 2016, 35(8):19-24. doi:10.3969/j.issn.1673-5285.2016.08.005 [45] ZHAO Guang, WANG Xingkun, DAI Caili, et al. Investigation of a novel enhanced stabilized foam:Nano-graphite stabilized foam[J]. Journal of Molecular Liquids, 2021, 343:117466. doi:10.1016/j.molliq.2021.117466 [46] XUAN Yang, JIANG Guancheng, LI Yinging. Nanographite oxide as ultrastrong fluid-loss-control additive in water-based drilling fluids[J]. Journal of Dispersion Science and Technology, 2014, 35(10):1386-1392. doi:10.1080/01932691.2013.858350 [47] KANJ M Y, KOSYNKIN D V. Oil industry first field trial of inter-well reservoir nanoagent tracers[J]. Proceedings of SPIE:The International Society for Optical Engineering, 2015, 9467(10):94671D. doi:10.1117/12.2179249 [48] TAJIK S, SHAHRABADI A, RASHIDI A, et al. Application of functionalized silica-graphene nanohybrid for the enhanced oil recovery performance[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 556:253-265. doi:10.1016/j.colsurfa.2018.08.029 [49] RADNIA H, RASHIDI A, SOLAIMANY NAZAR A R, et al. A novel nanofluid based on sulfonated graphene for enhanced oil recovery[J]. Journal of Molecular Liquids, 2018, 271:795-806. doi:10.1016/j.molliq.2018.09.070 [50] 魏兵,田庆涛,毛润雪,等. 纳米纤维素材料在油气田开发中的应用与展望[J]. 油气地质与采收率,2020,27(2):98-104. doi:10.13673/j.cnki.cn37-1359/te.2020.02.012 WEI Bing, TIAN Qingtao, MAO Runxue, et al. Application and prospect of nano-cellulosic materials in the development of oil and gas field[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2):98-104. doi:10.13673/j.cnki.cn37-1359/te.2020.02.012 [51] AADLAND R C, JAKOBSEN T D, HEGGSET E B, et al. High-temperature core flood investigation of nanocellulose as a green additive for enhanced oil recovery[J]. Nanomaterials, 2019, 9(5):665. doi:10.3390/nano9050665 [52] MOLNES S N, MAMONOV A, PASO K G, et al. Investigation of a new application for cellulose nanocrystals:A study of the enhanced oil recovery potential by use of a green additive[J]. Cellulose, 2018, 25:2289-2301. doi:10.1007/s10570-018-1715-5 [53] SILJE N M, IVAN P T, SKULE S, et al. Sandstone injectivity and salt stability of cellulose nanocrystals(CNC) dispersions:Premises for use of CNC in enhanced oil recovery[J]. Industrial Crops & Products, 2016, 93:152-160. doi:10.1016/j.indcrop.2016.03.019 [54] PARAJULI S, ALAZZAM O, WANG M, et al. Surface properties of cellulose nanocrystal stabilized crude oil emulsions and their effect on petroleum biodegradation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 596:124705. doi:10.1016/j.colsurfa.2020.124705 [55] GESTRANIUS M, STENIUS P, KONTTURI E, et al. Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials[J]. Colloid and Surface A:Physicochemical and Engineering Aspects, 2017, 519:60-70. doi:10.1016/j.colsurfa.2016.04.025 [56] CHANDRAN K. Multiwall carbon nanotubes (MWNT) fluid in EOR using core flooding method under the presence of electromagnetic waves[C]. Seri Iskandar:Universiti Teknologi Petronas, 2013. [57] 罗健辉,杨海恩,肖沛文,等. 纳米驱油技术理论与实践[J]. 油田化学,2020,37(4):669-674. doi:10.19346/j.cnki.1000-4092.2020.04.018 LUO Jianhui, YANG Haien, XIAO Peiwen, et al. Nanofluid flooding technology:Theory and practice[J]. Oilfield Chemistry, 2020, 37(4):669-674. doi:10.19346/j.cnki.1000-4092.2020.04.018 [58] SUN Xiaofei, ZHANG Yanyu, CHEN Guangpeng, et al. Application of nanoparticles in enhanced oil recovery:A critical review of recent progress[J]. Energies, Multidisciplinary Digital Publishing Institute, 2017, 10(3):345. doi:10.3390/en10030345 [59] HASHEMI R, NASSAR N N, ALMAO P P. Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles:A study of hot fluid flooding for athabasca bitumen recovery[J]. Energy & Fuels, 2013, 27(4):2194-2201. doi:10.1021/ef3020537 [60] HENDRANINGRAT L. A coreflood investigation of nanofluid enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2013, 11:128-138. doi:10.1016/j.petrol.2013.07.003 [61] PENG Baoliang, ZHANG Lecheng, LUO Jianhui, et al. A review of nanomaterials for nanofluid enhanced oil recovery[J]. RSC Advances, 2017, 7(51):32246-32254. doi:10.1039/C7RA05592G [62] JU Binshan, FAN Tailiang. Experimental study and mathematical model of nanoparticle transport in porous media[J]. Powder Technology, 2009, 192(2):195-202. doi:10.1016/j.powtec.2008.12.017 [63] HAMMOND P S, UNSAL E. Spontaneous imbibition of surfactant solution into an oil-wet capillary:Wettability restoration by surfactant-contaminant complexation[J]. Langmuir, 2011, 27(8):4412-4429. doi:10.1021/la1048503 [64] ROUSTAEI A, MOGHADASI J, BAGHERZADEH H, et al. An Experimental investigation of polysilicon nanoparticles' recovery efficiencies through changes in interfacial tension and wettability alteration[C]. SPE 156976-MS, 2012. doi:10.2118/156976-MS [65] RAGAB A M S, HANNORA A E. A comparative investigation of nano particle effects for improved oil recovery:Experimental work[C]. SPE 175395-MS, 2015. doi:10.2118/175395-MS [66] ALOMAIR O A, MATAR K M, ALSAEED Y H. Experimental study of enhanced-heavy-oil recovery in berea sandstone cores by use of nanofluids applications[C]. SPE 171539-PA, 2015. doi:10.2118/171539-PA [67] THOMAS S. Enhanced oil recovery:An overview[J]. Oil & Gas Science and Technology-Revue de l IFP, 2008, 63(1):9-19. doi:10.2516/ogst:2007060 [68] SHENG J J. Modern chemical enhanced oil recovery:Theory and practice[M]. Amsterdam:Elsevier Inc, 2011. doi:10.1016/C2009-0-20241-8 [69] MOGHADAM T F, AZIZIAN S. Effect of ZnO nanoparticles on the interfacial behavior of anionic surfactant at liquid/liquid interfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:333-339. doi:10.1016/j.colsurfa.2014.06.009 [70] MAHMOUDI S, JAFARI A, JAVADIAN S. Temperature effect on performance of nanoparticle/surfactant flooding in enhanced heavy oil recovery[J]. Petroleum Science, 2019(6):1387-1402. doi:10.1007/s12182-019-00364-6 [71] BASU S, SHARMA M M. Measurement of critical disjoining pressure for dewetting of solid surfaces[J]. Journal of Colloid and Interface Science, 1996, 181(2):443-455. doi:10.1006/jcis.1996.0401 [72] ZHANG H, RAMAKRISHNAN T S, NIKOLOV A, et al. Enhanced oil displacement by nanofluid's structural disjoining pressure in model fractured porous media[J]. Journal of Colloid and Interface Science, 2018, 511:48-56. doi:10.1016/j.jcis.2017.09.067 [73] ZHANG H, NIKOLOV A, WASAN D. Enhanced oil recovery (EOR) using nanoparticle dispersions:Underlying mechanism and imbibition experiments[J]. Energy & Fuels, 2014, 28(5):3002-3009. doi:10.1021/ef500272r [74] WASAN D, NIKOLOV A, KONDIPARTY K. The wetting and spreading of nanofluids on solids:Role of the structural disjoining pressure[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4):344-349. doi:10.1016/j.cocis.2011.02.001 [75] KAO R L, WASAN D T, NIKOLOV A D, et al. Mechanisms of oil removal from a solid surface in the presence of anionic micellar solutions[J]. Colloids & Surfaces, 1988, 34(4):389-398. doi:10.1016/0166-6622(88)80163-X [76] CHENGARA A, NIKOLOV A D, WASAN D T, et al. Spreading of nanofluids driven by the structural disjoining pressure gradient[J]. Journal of Colloid & Interface Science, 2004, 280(1):192-201. doi:10.1016/j.jcis.2004.07.005 [77] MATAR O K, CRASTER R V, SEFIANE K. Dynamic spreading of droplets containing nanoparticles[J]. Physical Review E, 2007, 76:056315. doi:10.1103/PhysRevE.76.056315 [78] SADEGHPOUR A, PIROLT F, GLATTER O. Submicrometer-sized pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid[J]. Langmuir, 2013, 29(20):6004-6012. doi:10.1021/la4008685 [79] PUERTO M, HIRASAKI G J, MILLER C A, et al. Surfactant systems for EOR in high-temperature, high-salinity environments[C]. SPE 129675-PA, 2012. doi:10.2118/129675-PA [80] SHARMA T, KUMAR G S, CHON B H, et al. Thermal stability of oil-in-water pickering emulsion in the presence of nanoparticle, surfactant and polymer[J]. Journal of Industrial and Engineering Chemistry, 2015, 22:324-334. doi:10.1016/j.jiec.2014.07.026 [81] HENDRANINGRAT L, LI S, OLE TORSÆTER. Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles:An experimental investigation[C]. SPE 165955-MS, 2013. doi:10.2118/165955-MS [82] WORTHEN A J, BAGARIA H G, CHEN Y, et al. Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture[J]. Journal of Colloid & Interface Science, 2013, 391:142-151. doi:10.1016/j.jcis.2012.09.043 [83] 彭宝亮,罗健辉,王平美,等. 纳米材料在油田堵水调剖中的应用进展[J]. 油田化学,2016,33(3):552-556. doi:10.19346/j.cnki.1000-4092.2016.03.035 PENG Baoliang, LUO Jianhui, WANG Pingmei, et al. Application progress of nanomaterials for water plugging and profile control in oilfield[J]. Oilfield Chemistry, 2016, 33(3):552-556. doi:10.19346/j.cnki.1000-4092.2016.03.035 [84] EMRANI A S, NASR-EL-DIN H A. An experimental study of nanoparticle-polymer-stabilized CO2 foam[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 524:17-27. doi:10.1016/j.colsurfa.2017.04.023 [85] SUN Qian, ZHANG Na, LI Zhaomin, et al. Nanoparticle-stabilized foam for effective displacement in porous media and enhanced oil recovery[J]. Energy Technology:Generation Conversion Storage Distribution, 2016, 4(9):1053-1063. doi:10.1002/ente.201600063 [86] EZEUKWU T, THOMAS R L, GUNNEROED T. Fines migration control in high-water-cut nigerian oil wells:Problems and solutions[C]. SPE 39482-MS, 1998. doi:10.2118/39482-MS [87] BEDRIKOVETSKY P, SIQUEIRA F D, FURTADO C A, et al. Modified particle detachment model for colloidal transport in porous media[J]. Transport in Porous Media, 2011, 86(2):353-383. doi:10.1007/s11242-010-9626-4 [88] CIVAN F. Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport[J]. Transport in Porous Media, 2010, 85(1):233-258. doi:10.1007/s11242-010-9557-0 [89] YUAN B, BEDRIKOVETSKY P, HUANG T, et al. Special issue:Formation damage during enhanced gas and liquid recovery[J]. Journal of Natural Gas Science & Engineering, 2016, 36:1051-1054. doi:10.1016/j.jngse.2016.11.019 [90] CIVAN F. Temperature effect on power for particle detachment from pore wall described by an arrhenius-type equation[J]. Transport in Porous Media, 2007, 67(2):329-334. doi:10.1007/s11242-006-9005-3 [91] SARKAR A K, SHARMA M M. Fines migration in two-phase flow[C]. SPE 17437-PA, 1990. doi:10.2118/17437-PA [92] CHENG X K, KAN A T, TOMSON M B. Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport[J]. Journal of Materials Research, 2005, 20(12):3244-3254. doi:10.1557/jmr.2005.0402 [93] YU Jianjia, AN Cheng, MO Di, et al. Study of adsorption and transportation behavior of nanoparticles in three different porous media[C]. SPE 153337-MS, 2012. doi:10.2118/153337-MS [94] YUAN B, MOGHANLOO R G, PATTAMASINGH P. Applying method of characteristics to study utilization of nanoparticles to reduce fines migration in deepwater reservoirs[C]. SPE 174192-MS, 2015. doi:10.2118/174192-MS [95] YUAN Bin, WANG Kai. Injectivity improvement by nanofluid preflush during low salinity water flooding[C]. IPTC-18611-MS, 2016. doi:10.2523/IPTC-18611-MS [96] HUANG T, CREWS J B, WILLINGHAM J R. Using nanoparticle technology to control fine migration[C]. SPE 115384-MS, 2008. doi:10.2118/115384-MS [97] HUANG T, CREWS J B, WILLINGHAM J R. Nanoparticles for formation fines fixation and improving performance of surfactant structure fluids[C]. Kuala Lumpur:International Petroleum Technology Conference, 2008. 10.3997/2214- 4609-pdb.148.iptc12414 [98] HUANG T, EVANS B A, CREWS J B, et al. Field case study on formation fines control with nanoparticles in offshore applications[C]. SPE 135088-MS, 2010. doi:10.2118/135088-MS [99] HABIBI A, AHMADI M, POURAFSHARY P, et al. Fines migration control in sandstone formation by improving silica surface zeta potential using a nanoparticle coating process[J]. Energy Sources, 2014, 36(21-24):2376-2382. doi:10.1080/15567036.2011.569836 [100] AHMADI M, HABIBI A, POURAFSHARI P, et al. Zeta potential investigation and mathematical modeling of nanoparticles deposited on the rock surface to reduce fine migration[C]. SPE 142633-MS, 2011. doi:10.2118/142633-MS [101] ASSEF Y, ARAB D, POURAFSHARY P. Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding[J]. Journal of Petroleum Science and Engineering, 2014, 12:331-340. doi:10.1016/j.petrol.2014.09.023 [102] 侯吉瑞,闻宇晨,屈鸣,等. 纳米材料提高油气采收率技术研究及应用[J]. 特种油气藏,2020,27(6):47-53. doi:10.3969/j.issn.1006-6535.2020.06.006 HOU Jirui, WEN Yuchen, QU Ming, et al. Research and application of nano-materials to enhance oil and gas recovery technology[J]. Special Oil and Gas Reservoirs, 2020, 27(6):47-53. doi:10.3969/j.issn.1006-6535.2020.06.006 [103] 周明辉,孙文杰,李克文. 纳米催化剂辅助超稠油氧化改质实验研究[J]. 中国科学(技术科学),2017,47(2):197-203. doi:10.1360/N092016-00307 ZHOU Minghui, SUN Wenjie, LI Kewen. Experimental research of nano catalyst assisted oxidization upgrading of super heavy oil[J]. Scientia Sinica Technologica, 2017, 47(2):197-203. doi:10.1360/N092016-00307 [104] MONTOYA T, ARGEL B L, NASSAR N N, et al. Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles[J]. Petroleum Science, 2016, 13(3):11. doi:10.1007/s12182-016-0100-y [105] WILSON A. Nanoparticle catalysts upgrade heavy oil for continuous-steam-injection recovery[J]. Journal of Petroleum Technology, 2017, 69(3):66-67. doi:10.2118/0317-0066-JPT [106] ISKANDAR F, DWINANTO E, ABDULLAH M, et al. Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction[J]. Powder & Particle, 2016, 33:3-16. doi:10.14356/kona.2016005 [107] GRAY M R, MCCAFFREY W C. Role of chain reactions and olefin formation in cracking, hydroconversion, and coking of petroleum and bitumen fractions[J]. Energy & Fuels, 2002, 16(3):756-766. doi:10.1021/ef010243s [108] HABIB F K, DINER C, STRYKER J M, et al. Suppression of addition reactions during thermal cracking using hydrogen and sulfided iron catalyst[J]. Energy & Fuels, 2013, 27(11):6637-6645. doi:10.1021/ef401904q [109] SHOKRLU H Y, BABADAGLI T. Transportation and interaction of nano and micro size metal particles injected to improve thermal recovery of heavy-oil[C]. SPE 146661-MS, 2011. doi:10.2118/146661-MS [110] JUNAID A S M, RAHMAN M M, ROCHA G, et al. On the role of water in natural-zeolite-catalyzed cracking of athabasca oilsands bitumen[J]. Energy & Fuels, 2014, 28(5):3367-3376. doi:10.1021/ef500532w [111] 袁士义,王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发,2018,45(4):657-668. doi:10.11698/PED.2018.04.11 YUAN Shiyi, WANG Qiang. New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4):657-668. doi:10.11698/PED.2018.04.11 [112] 袁士义,王强,李军诗,等. 提高采收率技术创新支撑我国原油产量长期稳产[J]. 石油科技论坛,2021,40(3):24-32. doi:10.3969/j.issn.1002-302x.2021.03.003 YUAN Shiyi, WANG Qiang, LI Junshi, et al. EOR technological innovation keeps China's crude oil production stable on long-term basis[J]. Petroleum Science and Technology Forum, 2021, 40(3):24-32. doi:10.3969/j.issn.1002-302x.2021.03.003 [113] 王光付,廖荣凤,李江龙,等. 中国石化低渗透油藏开发状况及前景[J]. 油气地质与采收率,2007,14(3):84-89. doi:10.13673/j.cnki.cn37-1359/te.2007.03.025 WANG Guangfu, LIAO Rongfeng, LI Jianglong, et al. Development status and prospect of low permeability reservoirs in SINOPEC[J]. Petroleum Geology and Recovery Efficiency, 2007, 24(3):84-89. doi:10.13673/j.cnki.cn37-1359/te.2007.03.025 [114] 岳湘安. 提高石油采收率基础[M]. 北京:石油工业出版社, 2007. YUE Xiang'an. Enhanced oil recovery basis[M]. Beijing:Petroleum Industry Press, 2007. [115] 中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会.致密油地质评价方法:GB/T 34906-2017[S].北京:中国标准出版社,2017. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Geological evaluation methods for tight oil:GB/T 34906-2017[S]. Beijing:Standards Press of China, 2017. [116] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184. doi:10.11743/ogg20190602 ZHU Rukai, ZOU Caineng, WU Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil and Gas Geology, 2019, 40(6):1168-1184. doi:10.11743/ogg20190602 [117] 邹才能. 非常规油气地质学[M]. 北京:地质出版社, 2014. ZOU Caineng. Unconventional petroleum geology[M]. Beijing:Geological Publishing House, 2014. [118] 邹才能,赵群,王红岩,等. 非常规油气勘探开发理论技术助力我国油气增储上产[J]. 石油科技论坛,2021,40(3):72-79. doi:10.3969/j.issn.1002-302x.2021.03.007 ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. Theory and technology of unconventional oil and gas exploration and development helps China increase oil and gas reserves and production[J]. Petroleum Science and Technology Forum, 2021, 40(3):72-79. doi:10.3969/j.issn.1002-302x.2021.03.007 [119] 国家市场监督管理总局,中国国家标准化管理委员会.页岩油地质评价方法:GB/T 38718-2020[S]. 北京:中国标准出版社,2020. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Geological evaluation method for shale oil:GB/T 38718-2020[S]. Beijing:Standards Press of China, 2020. [120] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10. doi:10.11698/PED.2020.01.01 ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1):1-10. doi:10.11698/PED.2020.01.01 [121] 贾承造. 中国石油工业上游科技进展与未来攻关方向[J]. 石油科技论坛,2021,40(3):1-10. doi:10.3969/j.issn.1002-302x.2021.03.001 JIA Chengzao. China's petroleum industrial upstream technological development and its future research areas[J]. Petroleum Science and Technology Forum, 2021, 40(3):1-10. doi:10.3969/j.issn.1002-302x.2021.03.001 [122] 丁瑜,辜思曼,何方舟,等. 纳米材料在水基压裂液中的应用研究进展[J]. 石油化工,2022,51(1):100-106. doi:10.3969/j.issn.1000-8144.2022.01.015 DING Yu, GU Siman, HE Fangzhou, et al. Research progress on application of nanomaterials in water-based fracturing fluids[J]. Petroleum Technology, 2022, 51(1):100-106. doi:10.3969/j.issn.1000-8144.2022.01.015 [123] 刘建坤,蒋廷学,黄静,等. 纳米材料改善压裂液性能及驱油机理研究[J]. 石油钻探技术,2022,50(1):103-111. doi:10.11911/syztjs.2021118 LIU Jiankun, JIANG Tingxue, HUANG Jing, et al. Study on mechanism of the fracturing fluid performance improvement and oil displacement using nanomaterials[J]. Petroleum Drilling Techniques, 2022, 50(1):103-111. doi:10.11911/syztjs.2021118 |
[1] | ZHOU Haiyan, ZHANG Yunlai, HE Yifan, MIAO Feifei. A Study on Profile Control and Flooding Performance of New Crosslinked Polymer Microspheres [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(6): 175-182. |
[2] | WEI Bing, LI Qinzhi, LIU Chenggang. Methods of Time Scaling-up for Spontaneous Imbibition [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(5): 61-73. |
[3] | ZHAO Shengxian, LIU Yong, FENG Jiangrong, FAN Cunhui, JI Chunhai. Brittleness Characteristics of Organic-rich Shale and Its Relationship with Fracture Development of Changning Area [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 1-13. |
[4] | WU Bin, HUANG Shengbing, GENG Mingyang, SHEN Pu. Arc Fault Characteristics and Implications for Petroleum Geology in the North of Bozhong Depression [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(4): 27-36. |
[5] | ZHAN Zedong, DENG Weifei, YAN Huanrong, YAN Xuemei. Research of Production Decline Model Dominated by Late-boundary Flow for Tight Gas Reservoir Under a Constant Flowing Pressure [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(3): 85-92. |
[6] | LI Shengfu, LI Gao, WU Jianzhong, LI Ze. Study on Damage Mechanism of Wellbore Fluid Accumulation Reservoir in Tight Sandstone Gas Reservoirs in Western Sichuan [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(3): 157-166. |
[7] | SUN Jinsheng, LI Rui, WANG Ren, QU Yuanzhi, HUANG Hongjun. Research on the Mechanism and Countermeasures of Shaft Instability in the Southern Margin of Junggar Basin [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2022, 44(1): 1-12. |
[8] | FU Jing, YAO Bowen, LEI Zhengdong, TIAN Ye, WU Yushu. Enhanced Oil Recovery of Ultra-low Permeability Tight Reservoirs in North America [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(5): 166-183. |
[9] | LI Ning, ZHENG Heguang, LU Jun'an, SHAO Changchun, HE Shiming. A Study on Stabilization Strategy of Jurassic Coal Strata in Northern Kuche Structural Belt [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 26-34. |
[10] | WEI Yunjin, HUANG Xuegang, ZOU Yuanhong, XU Weining, XIE Gang. A Study on Anti-collapse Mechanism and Synthesis of Hyperbranched Polymer HP-NH2 [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(4): 99-108. |
[11] | WANG Dacheng, LIU Yikun, BAI Junhui, FU Qingchun, CHEN Fen. Architecture Characterization and Fluid Migration Mechanism of Composite Point Dam in Meandering River [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 25-36. |
[12] | LI Yibo, HE Tianshuang, HU Zhiming, LI Yalong, PU Wanfen. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 101-110. |
[13] | HE Jingang, YUAN Lin. The Technology of “Adjustment + Displacement + Water Plugging + Fracturing” Using Polymer-surfactant Agent After Polymer Flooding [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 165-174. |
[14] | WEI Bing, LIU Jiang, ZHANG Xiang, PU Wanfen. Advances of Enhanced Oil Recovery Method and Theory in Tight Reservoirs [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 91-102. |
[15] | REN Tao, FENG Bin, SUN Wen, ZHANG Chunlin, TANG Daolin. Multi-objective Optimization Design of Push System for Microsphere Focusing Logging Tool [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(1): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||