[1] TAYLOR G I. The dispersion of matter in turbulent flow through a pipe[J]. Proceedings of the Royal Society of London, 1954, 223(1155):446468. doi:10.1098/rspa.1954.0130 [2] JOHNSON J E, SVEDEMAN S J, KUHL C A. Pipeline purging principles and practice[J]. Journal of Offshore Mechanics and Arctic Engineering, 1998, 120(4):249256. doi:10.1115/1.2829548 [3] KANNINEN M F, BROEK D, HAHN G T, et al. Toward an elastic fracture mechanics predictive capability for reactor piping[J]. Nuclear Engineering & Design, 1978, 48(1):117-134. doi:10.1016/0029-5493(78)90212-1 [4] TAYLOR G. Dispersion of soluble matter in solvent flowing slowly through a tube[J]. Proceedings of the Royal Society of London, 1953, 219(1137):186-203. [5] ARIS R. On the dispersion of a solute in a fluid flowing through a tube[J]. Process Systems Engineering, 1999, 1(1200):109-120. doi:10.1016/S1874-5970(99)80009-5 [6] CHOUCHAOUI B A, PICK R J. Behaviour of longitudinally aligned corrosion pits[J]. International Journal of Pressure Vessels & Piping, 1996, 67(1):17-35. doi:10.1016/0308-0161(94)00057-3 [7] HAUCH S R, BAI Y. Bending moment capacity of pipes[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122(4):243252. doi:10.1115/1.1314866 [8] BAI Yong, HAUCH S R. Collapse capacity of corroded pipes under combined pressure, Longitudinal force and bending[J]. International Journal of Offshore and Polar Engineering, 2001, 11(1):5563. [9] BAI Y, HAUCH S R. Local buckling and plastic collapse of corroded pipes with yield anisotropy[C]. ISOPE I-99-128, 1999. [10] GALAMBOS T V. Guide to stability design criteria for metal structures[M]. 5th Edition, John Wiley & Sons, 1998, 1723. [11] EKAMBARA K, JOSHI J B. Axial mixing in pipe fows:turbulent and transition regions[J]. Chemical Engineering Science, 2003, 58(12):27152724. doi:10.1016/S00092509(03)00102-7 [12] EKAMBARA K, JOSHI J B. Axial mixing in laminar pipe fows[J]. Chemical Engineering Science, 2004, 59(18):39293944. doi:10.1016/j.ces.2004.05.025 [13] 王俊奇,白博峰,郑欣. 输气管道置换过程气体混合的影响因素分析[J]. 油气储运, 2010, 29(6):430-432, 435. WANG Junqi, BAI Bofeng, ZHENG Xin. Analysis on influence factor of air mixing in gas displacement process of gas pipeline[J]. Oil & Gas Storage and Transportation, 2010, 29(6):430-432, 435. [14] 周计明. 油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D]. 西安:西北工业大学, 2002, 5987. [15] 周琦,徐鸿麟. 管线钢在含硫化氢及高压二氧化碳饱和NACE溶液中的腐蚀行为[J]. 兰州理工大学学报, 2005, 31(1):31-34. doi:10.3969/j.issn.1673-5196.2005.01.008 ZHOU Qi, XU Honglin. Corrosion behavior of pipeline steel in NACE high pressure carbon dioxide solutions with saturated hydrogen sulfide[J]. Journal of Lanzhou University of Technology, 2005, 31(1):3134. doi:10.3969/j.issn.1673-5196.2005.01.008 [16] ROGNE T, DRUGLI J M, VALEN S. Testing of stainless steel welds for various applications[J]. Corrosion Engineering, 1992, 48(10):864-870. doi:10.5006/1.3315886 [17] 张学元,邸超,雷良才. 二氧化碳腐蚀与控制[M]. 北京:化学工业出版社, 2000, 137-206. [18] SHOESMITH D W, TAYLOR P, BAILEY M G, et al. Electroehemieal behavior of iron in alkaline sulphide solutions[J]. Electrochimica Acta, 1978, 23(9):903-916. doi:10.1016/0013-4686(78)87014-5 [19] RHODES P R. Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments:A review[J]. Corrosion, 2001, 57(11):923-966. doi:10.5006/1.3290320 [20] LEE Kunlin, NESIC S. The effect of trace amount of H2S on CO2 corrosion investigated by using the EIS technique[C]. SPE 05630, 2005. [21] ZHENG Yougui, NING Jing, BRUCE B, et al. Electrochemical model of mild steel corrosion in a mixed CO2H2S aqueous environment[C]. SPE 2014-3907, 2014. [22] 徐鸿麟. 油管钢高温高压CO2、H2S及CO2腐蚀行为研究[D]. 兰州:兰州理工大学, 2005:18-19. [23] 李国浩,谷坛,唐永帆,等. CO2腐蚀预测模型[J]. 石油化工腐蚀与防护, 2007, 24(6):1-4. doi:10.3969/j.issn.1007-015X.2007.06.001 LI Guohao, GU Tan, TANG Yongfan, et al. CO2 corrosion prediction models[J]. Corrosion & Protection in Petrochemical Industry, 2007, 24(6):1-4. doi:10.3969/j.issn.1007-015X.2007.06.001 [24] 李明,李晓刚,陈华. 在湿H2S环境中金属腐蚀行为和机理研究概述[J]. 腐蚀科学与防护技术, 2005, 17(2):107-111. doi:10.3969/j.issn.1002-6495.2005.02.012 LI Ming, LI Xiaogang, CHEN Hua. Areview on corrosion behavior and mechanism of metals in wet H2S[J]. Corrosion Science and Protection Technology, 2005, 17(2):107111. doi:10.3969/j.issn.1002-6495.2005.02.012 [25] DAVIES D H, BURSTEIN G T. The effect of bicarbonate on the eorrosion and passivation of iron[J]. Corrosion, 1980, 36(8):416. [26] 张学元,余刚,王凤平,等. Cl-API P105钢在含CO2溶液中的电化学腐蚀行为的影响[J]. 高等学校化学报,1999,20(7):1115-1118. doi:10.3321/j.issn:02510790.1999.07.022 ZHANG Xueyuan, YU Gang, WANG Fengping, et al. Influence of Cl-on corrosion behavior of API P105 steel in the CO2 saturated solution[J]. Chemical Journal of Chinese Universities, 1999, 20(7):11151118. doi:10.3321/j.issn:0251-0790.1999.07.022 [27] 方华灿,赵学年,陈国明. 海底管线腐蚀缺陷的安全可靠性评估[J]. 石油矿场机械, 2000, 30(6):1-4. doi:10.3969/j.issn.1001-3482.2001.06.001 FANG Huacan, ZHAO Xuenian, CHEN Guoming. Reliability evaluation of corrosion defect of the subsea pipeline[J]. Oil Field Equipment, 2000, 30(6):1-4. doi:10.3969/j.issn.1001-3482.2001.06.001 [28] 王春兰,张鹏,陈利琼,等. 腐蚀管道剩余强度评价的基本方法[J]. 四川大学学报(工程科学版), 2003, 35(5):50-54. doi:10.3969/j.issn.1009-3087.2003.05.012 WANG Chunlan, ZHANG Peng, CHEN Liqiong, et al. Methods for assessment of remaining strength of corroded pipe[J]. Journal of Sichuan University (Engineering Science Edition), 2003, 35(5):50-54. doi:10.3969/j.issn.10093087.2003.05.012 [29] 刘海峰,王毅辉. 在役油气压力管道腐蚀剩余强度评价方法探讨[J]. 天然气工业, 2001, 21(6):90-92. doi:10.3321/j.issn:1000-0976.2001.06.030 LIU Haifeng, WANG Yihui. A discussion on the method of evaluating residual corrosion strength of in-service pressure pipeline[J]. Natural Gas Industry, 2001, 21(6):90-92. doi:10.3321/j.issn:1000-0976.2001.06.030 [30] HART J, GUYMER I, JONES A, et al. Longitudinal dispersion coefficients within turbulent and transitional pipe flow[J]. GeoPlanet-Earth and Planetary Sciences, 2013, 11(1):133-145. doi:10.1007/978-3-642-30209-1_8 |