[1] 李成博,宁传奇,钟长林,等. 中国油页岩矿勘查控制程度探讨[J]. 吉林大学学报(地球科学版), 2021, 51(1):13-21. doi:10.13278/j.cnki.jjuese.20200072 LI Chengbo, NING Chuanqi, ZHONG Changlin, et al. Discussion on extent of exploration control of oil shale deposits in China[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 13-21. doi: 10.13278/j.cnki.jjuese.20200072
[2] 刘树根,王世玉,孙玮,等. 四川盆地及其周缘五峰组-龙马溪组黑色页岩特征[J]. 成都理工大学学报(自然科学版), 2013, 40(6):621-639. doi:10.3969/j.issn.1671-9727.2013.06.02 LIU Shugen, WANG Shiyu, SUN Wei, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J]. Jonurnal of Chengdu University of Technology (Science & Tenchnology Edition), 2013, 40(6): 621-639. doi: 10.3969/j.issn.1671-9727.2013.06.02
[3] 徐传正,冯烁,田继军,等. 龙马溪组岩相类型及其对孔隙特征的影响因素[J]. 西南石油大学学报(自然科学版),2021,43(1):51-60. doi:10.11885/j.issn.1674-5086.2019.05.04.01 XU Chuanzheng, FENG Shuo, TIAN Jijun, et al. Lithofacies types of Longmaxi Formation and its influencing factors on pore characteristics[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(1): 51-60. doi: 10.11885/j.issn.1674-5086.2019.05.04.01
[4] JARVIE D M, HILL R J, RUBLE T E. Unconventional shale-gas systems: The missisippian barnett shale of northcentral texas as one mode for thermongenic shale-gas assessmet[J]. AAPG Bulletin, 2007, 91(4): 475-499.
[5] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004
[6] 赵越,李磊,司运航,等. 浅层页岩气储层孔隙分形特征及控制因素:以云南昭通地区龙马溪组为例[J]. 吉林大学学报(地球科学版), 2022, 52(6):1813-1829. doi:10.13278/j.cnki.jjuese.20220148 ZHAO Yue, LI Lei, SI Yunhang, et al. Fractal characteristics and controlling factors of pores in shallow shale gas reservoirs: A case study of Longmaxi Formation in Zhaotong Area, Yunnan Province[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(6): 1813-1829. doi: 10.13278/j.cnki.jjuese.20220148
[7] LUFFEL D L, GUIDRY F K. New core analysis methods for measuring reservoir rock properties of devonian shale[J]. Journal of Petroleum Technology, 1989, 44(11): 1184-1190. doi: 10.2118/20571-PA
[8] 吴逸豪,卢双舫,陈方文,等. 泥页岩储层有机孔隙定量评价研究[J]. 特种油气藏, 2015, 22(5):65-68. doi:10.3969/j.issn.1006-6535.2015.05.013 WU Yihao, LU Shuangfang, CHEN Fangwen, et al. Quantitative characterization of organic pores in muddy shale reservoirs[J]. Special Oil and Gas Reservoirs, 2015, 22(5): 65-68. doi: 10.3969/j.issn.1006-6535.2015.05.013
[9] 钟光海,陈丽清,廖茂杰,等. 页岩气储层品质测井综合评价[J]. 天然气工业, 2020, 40(2):54-60. doi:10.3787/j.issn.1000-0976.2020.02.006 ZHONG Guanghai, CHEN Liqing, LIAO Maojie, et al. A comprehensive logging evaluation method of shale gas reservoir quality[J]. Natural Gas Industry, 2020, 40(2): 54-60. doi: 10.3787/j.issn.1000-0976.2020.02.006
[10] 王洪亮,穆龙新,时付更,等. 基于循环神经网络的油田特高含水期产量预测方法[J]. 石油勘探与开发, 2020, 47(5):1009-1015. doi:10.11698/PED.2020.05.15 WANG Hongliang, MU Longxin, SHI Fugeng, et al. Production prediction at ultra-high water cut stage via recurrent neural network[J]. Petroleum Exploration and Development, 2020, 47(5): 1009-1015. doi: 10.11698/PED.2020.05.15
[11] GU Ming, GOKARAJU D, CHEN Dingding, et al. Shale fracturing characterization and optimization by using anisotropic acoustic interpretation, 3D fracture modeling, and supervised machine learning[J]. Petrophysics: The SPWLA Journal of Formation Evaluation and Reservoir Description, 2016, 57(6): 573-587.
[12] 惠钢,陈胜男,王海,等. 基于改进残差的神经网络方法预测页岩气甜点[J]. 西南石油大学学报(自然科学版), 2021, 43(5):19-32. doi:10.11885/j.issn.1674-5086.2021.02.27.01 HUI Gang, CHEN Shengnan, WANG Hai, et al. Application of improved residual neural network-based machine learning method in the prediction of shale gas sweet spot[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5): 19-32. doi: 10.11885/j.issn.1674-5086.2021.02.27.01
[13] SILVA A A, LIMA N I A, MISSAGIA R M, et al. Artificial neural networks to support petrographic classification of carbonate-siliciclastic rocks using well logs and textural information[J]. Journal of Appliced Geophysics, 2015, 117: 118-125.
[14] 杨柳青,陈伟,查蓓. 利用卷积神经网络对储层孔隙度的预测研究与应用[J]. 地球物理学进展, 2019, 34(4):1548-1555. doi:10.6038/pg2019CC0528 YANG Liuqing, CHEN Wei, ZHA Bei. Prediction and application of reservoir porosity by convolutional neural network[J]. Progress in Geophysics, 2019, 34(4): 1548-1555. doi: 10.6038/pg2019CC0528
[15] 聂舟,马诗杰,伍秋姿,等. 长宁地区海相页岩天然裂缝发育特征及其对含气性的影响[J]. 断块油气田, 2022, 29(5):591-597. NIE Zhou, MA Shijie, WU Qiuzi, et al. Development characteristics of natural fractures in marine shale in Changning area and their influence on gas-bearing properties[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 591-597.
[16] 胡月,陈雷,周昊,等. 海相页岩纹层特征及其对页岩储层发育的影响:以川南长宁地区龙马溪组为例[J]. 断块油气田, 2021, 28(2):145-150. doi:10.6056/dkyqt202102001 HU Yue, CHEN Lei, ZHOU Hao, et al. Lamina characteristics of marine shale and its influence on shale reservoir development: A case study of Longmaxi Formation, Changning Area, South Sichuan Basin[J]. FaultBlock Oil and Gas Field, 2021, 28(2): 145-150. doi: 10.6056/dkyqt202102001
[17] 范高锋,王伟胜,刘纯,等. 基于人工神经网络的风电功率预测[J]. 中国电机工程学报,2008,28(34):118-123. doi:10.3321/j.issn:0258-8013.2008.34.019 FAN Gaofeng, WANG Weisheng, LIU Chun, et al. Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE, 2008, 28(34): 118-123. doi: 10.3321/j.issn:0258-8013.2008.34.019
[18] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
[19] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251. doi:10.11897/SP.J.1016.2017.01229 ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolution neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016.2017.01229
[20] 刘建伟,刘媛,罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):1921-1930, 1942. doi:10.3969/j.issn.1001-3695.2014.07.001 LIU Jianwei, LIU Yuan, LUO Xionglin. Research and development on deep learning[J]. Application Research of Computers, 2014, 31(7): 1921-1930, 1942. doi: 10.3969/j.issn.1001-3695.2014.07.001
[21] 熊中敏,郭怀宇,吴月欣. 缺失数据处理方法研究综述[J]. 计算机工程应用, 2021, 57(14):27-38. doi:10.3778/j.issn.1002-8331.2101-0187 XIONG Zhongmin, GUO Huaiyu, WU Yuexin. Review of missing data processing methods[J]. Computer Engineering and Applications, 2021, 57(14): 27-38. doi: 10.3778/j.issn.1002-8331.2101-0187
[22] 陈娟,王献雨,罗玲玲,等. 缺失值填补效果:机器学习与统计学习的比较[J]. 统计与决策, 2020, 36(17):28-32. doi:10.13546/j.cnki.tjyjc.2020.17.006 CHEN Juan, WANG Xianyu, LUO Lingling, et al. Comparison of machine learning and statistical learning in the imputation of missing values[J]. Statistics and Decision, 2020, 36(17): 28-32. doi: 10.13546/j.cnki.tjyjc.2020.17.006
[23] 魏杰,杨斌,刘锋,等. 基于岩性识别的BP神经网络孔隙度预测[J]. 石油化工应用, 2020, 39(3):105-110. doi:10.3969/j.issn.1673-5285.2020.03.023 WEI Jie, YANG Bin, LIU Feng, et al. Porosity prediction of BP neural network based on lithology identification[J]. Petrochemical Industry Application, 2020, 39(3): 105-110. doi: 10.3969/j.issn.1673-5285.2020.03.023
[24] HAMADA G M, ELSHAFEI M A. Neural network prediction of porosity and permeability of heterogeneous gas sand reservoirs[C]. SPE 126042-MS, 2009. doi: 10.2118/126042-MS
[25] KANFAR R, SHAIKH O, YOUSEFZADEN M, et al. Real-time well log prediction from drilling data using deep learning[C]. IPTC 19693-MS, 2020. doi: 10.2523/IPTC-19693-MS
[26] 张勇,陶一凡,巩敦卫. 迁移学习引导的变源域长短时记忆网络建筑负荷预测[J]. 控制与决策,2021,36(10):2328-2338. doi:10.13195/j.kzyjc.2020.0215 ZHANG Yong, TAO Yifan, GONG Dunwei. Load forecasting of buildings using LSTM based on transfer learning with variable source domain[J]. Control and Decision, 2021, 36(10): 2328-2338. doi: 10.13195/j.kzyjc.2020.0215 |