西南石油大学学报(自然科学版) ›› 2024, Vol. 46 ›› Issue (2): 1-14.DOI: 10.11885/j.issn.1674-5086.2022.07.15.03
• 地质勘探 • 下一篇
游利军, 范道全, 康毅力, 周洋, 陈杨
收稿日期:
2022-07-15
发布日期:
2024-05-11
通讯作者:
游利军,E-mail:youlj0379@126.com
作者简介:
游利军,1976年生,男,汉族,河南洛阳人,教授,博士研究生导师,主要从事储层保护理论与技术、非常规油气、岩石物理方面的教学和科研工作。E-mail:youlj0379@126.com;范道全,1998年生,男,汉族,重庆云阳人,硕士研究生,主要从事页岩氧化、储层保护理论与技术方向的研究工作。E-mail:1390221722@qq.com;康毅力,1964年生,男,汉族,天津蓟州区人,教授,博士研究生导师,主要从事储层保护理论与技术、非常规天然气和油气田开发地质方向科研与教学。E-mail:ccwctkyl@163.com;周洋,1995年生,男,汉族,重庆万州人,博士研究生,主要从事储层保护、非常规油气、岩石物理等方面的研究。E-mail:zhouy2020@126.com;陈杨,1996年生,男,汉族,四川乐山人,博士研究生,主要从事储层保护理论与技术、非常规油气等方面的研究。E-mail:cyswpu@126.com
基金资助:
YOU Lijun, FAN Daoquan, KANG Yili, ZHOU Yang, CHEN Yang
Received:
2022-07-15
Published:
2024-05-11
摘要: 有机质含量是评价页岩生产油气能力的重要指标,对孔隙度及含气量均有影响,也是页岩储层地质甜点评价的关键参数,而有机质含量无法体现有机质的分布、连通性、空间占比及其对油气渗流、储层改造的影响。通过对资料的整理与分析,厘清了有机质体积含量的概念,给出并分析了公式法、扫描电镜估算法、 CT 扫描法、低场核磁共振测量法及岩石物理模型法等 5 种计算方法的优势与不足,并探讨了有机质体积含量对富有机质页岩油气开发的意义。有机质体积含量指单位体积页岩中有机质的体积,用百分数表示,强化了页岩气层评价与开发中有机孔的重要性,丰富了页岩气储层评价参数体系;有机质是页岩的弱结构点或弱结构面,有机质体积含量的特性为地质甜点与工程甜点指标搭建了桥梁;有机质的可溶性及空间占比为油气储层孔缝溶扩 “物质净移除、减量增渗”新思路的提出奠定基础,将有机质作为溶蚀改造对象,少量有机质溶蚀将极大增加储层改造体积。
中图分类号:
游利军, 范道全, 康毅力, 周洋, 陈杨. 页岩有机质体积含量:概念、测试方法及意义[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 1-14.
YOU Lijun, FAN Daoquan, KANG Yili, ZHOU Yang, CHEN Yang. Organic Volume Proportion in Shale: Concept, Measurement Method and Significance[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(2): 1-14.
[1] DAVIS H R, BYERS C W, DEAN W E. Pyrite Formation in the Lower Cretaceous Mowry Shale: Effect of organic matter type and reactive iron content[J]. American Journal of Science, 1988, 288(9): 873-890. [2] JIANG Yuqiang, DONG Dazhong, QI Lin, et al. Basic features and evaluation of shale gas reservoirs[J]. Natural Gas Industry, 2010, 30(10): 7-12. doi: 10.3787/j.issn.1000-0976.2010.10.002 蒋裕强, 董大忠, 漆麟, 等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010, 30(10): 7-12. doi: 10.3787/j.issn.1000-0976.2010.10.002 [3] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092 [4] ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理, 地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. [5] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/0817I111061 [6] ZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26. 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26. [7] DONG Xiaoxia, XIONG Liang. Microscopic space types and its influencing factors of the lower Cambrian Qiongzhusi Shale, southern Sichuan Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 8(3): 415-422. doi: 10.3969/j.issn.1001-1749.2016.03.19 董晓霞, 熊亮. 川南筇竹寺组页岩储集空间类型及发育影响因素[J]. 物探化探计算技术, 2016, 38(3): 415-422. doi: 10.3969/j.issn.1001-1749.2016.03.19 [8] BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. doi: 10.11698/PED.2017.01.08 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. doi: 10.11698/PED.2017.01.08 [9] BORJIGIN Tenger, LU Longfei, YU Lingjie, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. doi: 10.11698/PED.2021.04.02 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. doi: 10.11698/PED.2021.04.02 [10] JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. [11] ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02 [12] TANG Ying, TANG Xuan, WANG Guangyuan, et al. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 2011, 31(2): 393-399. doi: 10.3969/j.issn.1671-2552.2011.02.026 唐颖, 唐玄, 王广源, 等. 页岩气开发水力压裂技术综述[J]. 地质通报, 2011, 31(2): 393-399. doi: 10.3969/j.issn.1671-2552.2011.02.026 [13] CHEN Zuo, XUE Chengjin, JIANG Tingxue, et al. Proposals for the application of fracturing by stimulated reservoir volume in shale gas wells in China[J]. Natural Gas Industry, 2010, 30(10): 30-32. doi: 10.3787/j.issn.1000-0976.2010.10.007 陈作, 薛承瑾, 蒋廷学, 等. 页岩气井体积压裂技术在我国的应用建议[J]. 天然气工业, 2010, 30(10): 30-32. doi: 10.3787/j.issn.1000-0976.2010.10.007 [14] ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures: A review[J]. Journal of Structural Geology, 2014, 69: 377-394. doi: 10.1016/j.jsg.2014.05.011 [15] CHEN Zongqing. Shale gas exploration in Jiulaodong Formation of Lower Cambrian, Sichuan Basin[J]. China Petroleum Exploration, 2012, 17(5): 71-78. doi: 10.3969/j.issn.1672-7703.2012.05.011 陈宗清. 四川盆地下寒武统九老洞组页岩气勘探[J]. 中国石油勘探, 2012, 17(5): 71-78. doi: 10.3969/j.issn.1672-7703.2012.05.011 [16] NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329- 340. doi: 10.1306/10240808059 [17] QIN Kuangzong. Organic matter content and element composition of Fushun and Maoming oil shales[J]. Journal of East China Petroleum Institute, 1982(2): 71-79. 秦匡宗. 抚顺和茂名油页岩的有机质含量及其元素组成[J]. 华东石油学院学报, 1982(2): 71-79. [18] ROSS D, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine & Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004 [19] KANG Yili, BAI Jiajia, YOU Lijun. Influence of organic content on acoustic wave propagation characteristic of organic-rich shale[J]. Natural Gas Geoscience, 2017, 28(9): 1341-1349. doi: 10.11764/j.issn.1672-1926.2017.07.001 康毅力, 白佳佳, 游利军. 有机质含量对页岩声波传播特性的影响[J]. 天然气地球科学, 2017, 28(9): 1341-1349. doi: 10.11764/j.issn.1672-1926.2017.07.001 [20] FU Boye, FU Liyun, CAO Chenghao, et al. The analysis of the influence of organic content on the elastic properties of shale based on solid substitution model[J]. Chinese Journal of Geophysics, 2020, 63(7): 2823-2835. doi: 10.6038/cjg2020N0039 付博烨, 符力耘, 曹呈浩, 等. 基于固体替换模型的有机质含量对页岩弹性性质的影响分析[J]. 地球物理学报, 2020, 63(7): 2823-2835. doi: 10.6038/cjg2020N0039 [21] WANG Jianguo, LI Zhonggang, GU Daihong, et al. The calculation model for shale absorption gas content considering the organic content and its application[J]. Science Technology and Engineering, 2014, 14(22): 28-33. doi: 10.3969/j.issn.1671-1815.2014.22.006 王建国, 李忠刚, 顾岱鸿, 等. 考虑有机质含量的页岩吸附气含量计算模型及其应用[J]. 科学技术与工程, 2014, 14(22): 28-33. doi: 10.3969/j.issn.1671-1815.2014.22.006 [22] LÜ Fangtao, NING Zhengfu, WU Xiaojun, et al. A comparative study of gas transport in dry and moisturized shale matrix considering organic matter volume fraction and water distribution characteristics[J]. Journal of Petroleum Science and Engineering, 2021, 208: 109483. doi: 10.1016/j.petrol.2021.109483 [23] LIU Bei. The organic matter in shales: Types, thermal evolution, and organic pores[J]. Earth Science, 2023, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130 刘贝. 泥页岩中有机质: 类型、热演化与有机孔隙[J]. 地球科学, 2023, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130 [24] ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Petrographic methods to distinguish organic matter type in shale[J]. Petroleum Geology & Experiment, 2016, 38(4): 514-520. doi: 10.11781/sysydz201604514 赵建华, 金之钧, 金振奎, 等. 岩石学方法区分页岩中有机质类型[J]. 石油实验地质, 2016, 38(4): 514-520. doi: 10.11781/sysydz201604514 [25] LOUCKS R G, REED R M. Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. Gulf Coast Association of Geological Societies Transactions, 2014, 3: 51-60. [26] State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Isolation method for kerogen from sedimentary rock: GB/T 19144-2010[S]. Beijing: Standards Press of China, 2010. 中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 沉积岩中干酪根分离方法: GB/T 19144—2010[S]. 北京: 中国标准出版社, 2010. [27] CN106680142A[P]. 2017-05-17. ZOU Guangui, ZENG Hu, TANG Xiaoming, et al. A method for calculating kerogen density in rocks: CN106680142A[P]. 2017-05-17. 邹冠贵, 曾葫, 汤小明, 等. 一种计算岩石中干酪根密度的方法: [28] WANG Pengfei, TIAN Qianning, ZHANG Wei, et al. Application of heliumion microscope in recognition of organic matter pore in shale[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(3): 274-281. doi: 10.3969/j.issn.1000-6281.2020.03.008 王朋飞, 田黔宁, 张玮, 等. 氦离子显微镜在页岩有机质孔隙识别中的应用[J]. 电子显微学报, 2020, 39(3): 274-281. doi: 10.3969/j.issn.1000-6281.2020.03.008 [29] GAN Yuxue, YANG Feng, WU Jie, et al. Application of scanning electron microscopy in rock-mineral analysis[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(3): 284-293. doi: 10.3969/j.issn.1000-6281.2019.03.013 甘玉雪, 杨锋, 吴杰, 等. 扫描电子显微镜在岩矿分析中的应用[J]. 电子显微学报, 2019, 38(3): 284-293. doi: 10.3969/j.issn.1000-6281.2019.03.013 [30] JIAO Shujing, ZHANG Hui, XUE Dongchuan. SEM study on organic macerals of shale in Lucaogou Formation Santanghu Basin[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(3): 257-263. doi: 10.3969/j.issn.1000-6281.2019.03.008 焦淑静, 张慧, 薛东川. 三塘湖盆地芦草沟组页岩有机显微组分扫描电镜研究[J]. 电子显微学报, 2019, 38(3): 257-263. doi: 10.3969/j.issn.1000-6281.2019.03.008 [31] WANG Xiaoqi, JIN Xu, LI Jianming, et al. FIB-SEM applications in petroleum geology research[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(3): 303- 319. doi: 10.3969/j.issn.1000-6281.2019.03.015 王晓琦, 金旭, 李建明, 等. 聚焦离子束扫描电镜在石油地质研究中的综合应用[J]. 电子显微学报, 2019, 38(3): 303-319. doi: 10.3969/j.issn.1000-6281.2019.03.015 [32] JIAO Shujing, XUE Dongchuan, ZHOU Xiaofeng, et al. A method for estimating TOC of shale by SEM[J]. Journal of Chinese Electron Microscopy Society, 2021, 40(4): 406-413. doi: 10.3969/j.issn.1000-6281.2021.04.008 焦淑静, 薛东川, 周晓峰, 等. 页岩有机碳含量的扫描电镜估算方法[J]. 电子显微学报, 2021, 40(4): 406-413. doi: 10.3969/j.issn.1000-6281.2021.04.008 [33] ZHOU Feng, XI Xiang, LIU Weihua, et al. A method to measure organic matter content in shale: CN106198579B[P]. 2019-03-26. 周枫, 奚相, 刘卫华, 等. 一种测量页岩中有机质含量的方法: CN106198579B[P]. 2019-03-26. [34] XIAO Lizhi, JIA Zijian, LIAO Guangzhi. Method and device for measuring organic matter content in shale by low-field NMR: CN105241912A[P]. 2016-01-13. 肖立志, 贾子健, 廖广志. 低场核磁共振测量页岩有机质含量的方法及装置: CN105241912A[P]. 2016-01-13. [35] SUN Weitao, LU Minghui, YANG Zhifang, et al. Method and Device for determining volume content of non-uniform pore rock and solid organic matter: CN105301642B[P]. 2017-11-07. 孙卫涛, 卢明辉, 杨志芳, 等. 非均匀孔隙岩石及其固态有机质体积含量确定方法及装置: CN105301642B[P]. 2017-11-07. [36] CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3): 438-444. doi: 10.13225/j.cnki.jccs.2012.03.007 陈尚斌, 朱炎铭, 王红岩, 等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报, 2012, 37(3): 438-444. doi: 10.13225/j.cnki.jccs.2012.03.007 [37] ZHANG Guangrong, NIE Haikuan, TANG Xuan, et al. Optimization method and application of shale gas enrichment layer based on biogenic silica and organic matter pore: Case study of Wufeng-Longmaxi formations shale in the Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2021, 32(6): 888-898. doi: 10.11764/j.issn.1672-1926.2021.01.009 张光荣, 聂海宽, 唐玄, 等. 基于有机孔和生物成因硅优选页岩气富集高产层段的方法及应用——以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 天然气地球科学, 2021, 32(6): 888-898. doi: 10.11764/j.issn.1672-1926.2021.01.009 [38] SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. doi: 10.1306/03301110145 [39] ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum "orderly accumulation": Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14-25. doi: 10.11698/PED.2014.01.02 邹才能, 杨智, 张国生, 等. 常规-非常规油气"有序聚集"理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1): 14-25. doi: 10.11698/PED.2014.01.02 [40] PAN Renfang, GONG Qin, YAN Jie, et al. Elements and gas enrichment laws of sweet spots in shale gas reservoir: A case study of the Longmaxi Fm in Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(3): 7-13. doi: 10.3787/j.issn.1000-0976.2016.03.002 潘仁芳, 龚琴, 鄢杰, 等. 页岩气藏"甜点"构成要素及富气特征分析——以四川盆地长宁地区龙马溪组为例[J]. 天然气工业, 2016, 36(3): 7-13. doi: 10.3787/j.issn.1000-0976.2016.03.002 [41] CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(5): 775-782. doi: 10.7623/syxb201105006 陈尚斌, 朱炎铭, 王红岩, 等. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J]. 石油学报, 2011, 32(5): 775-782. doi: 10.7623/syxb201105006 [42] WANG Qingtao, WANG Taoli, LIU Wenping, et al. Relationships among composition, porosity and permeability of Longmaxi shale reservoir in the Weiyuan Block, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 33-47. doi: 10.1016/j.marpetgeo.2018.12.026 [43] RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]. SPE 115258-MS, 2008. doi: 10.2118/115258-MS [44] YUAN Yuyang, LIU Yonglin, WANG Ying. "Sweet spot" effect and mechanism of shale fracture development in Longmaxi Formation, northwestern Guizhou[J]. Acta Petrologica et Mineralogica, 2020, 39(6): 808-818. doi: 10.3969/j.issn.1000-6524.2020.06.010 袁余洋, 刘永林, 王瑛. 黔西北地区龙马溪组页岩有机质和脆性矿物的控缝机制[J]. 岩石矿物学杂志, 2020, 39(6): 808-818. doi: 10.3969/j.issn.1000-6524.2020.06.010 [45] HU Wenrui. Geology-engineering integration: A necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1-5. doi: 10.3969/j.issn.1672-7703.2017.01.001 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1): 1-5. doi: 10.3969/j.issn.1672-7703.2017.01.001 [46] WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscience- to-production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4): 1-23. doi: 10.3969/j.issn.1672-7703.2015.04.001 吴奇, 梁兴, 鲜成钢, 等. 地质-工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4): 1-23. doi: 10.3969/j.issn.1672-7703.2015.04.001 [47] CHEN Mingjun, KANG Yili, ZHANG Tingshan, et al. Characteristics of multiscale mass transport and coordination mechanisms for shale gas[J]. Scientia Sinica (Technologica), 2018, 48(5): 473-487. doi: 10.1360/N092017-00202 陈明君, 康毅力, 张廷山, 等. 页岩气多尺度传质特征及过程协调机制研究[J]. 中国科学(技术科学), 2018, 48(5): 473-487. doi: 10.1360/N092017-00202 [48] LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3): 525-532. doi: 10.11764/j.issn.1672-1926.2011.03.525 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3): 525-532. doi: 10.11764/j.issn.1672-1926.2011.03.525 [49] DING Jianghui, ZHANG Jinchuan, YANG Chao, et al. Formation evolution and influencing factors of organic pores in shale[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(2): 33-44. doi: 10.11885/j.issn.1674-5086.2018.03.05.03 丁江辉, 张金川, 杨超, 等. 页岩有机孔成因演化及影响因素探讨[J]. 西南石油大学学报(自然科学版), 2019, 41(2): 33-44. doi: 10.11885/j.issn.1674-5086.2018.03.05.03 [50] HUANG Lei, SHEN Wei. Characteristics and controlling factors of the formation of pores of a shale gas reservoir: A case study from Longmaxi Formation of the Upper Yangtze Region, China[J]. Earth Science Frontiers, 2015, 22(1): 374-385. doi: 10.13745/j.esf.2015.01.032 黄磊, 申维. 页岩气储层孔隙发育特征及主控因素分析: 以上扬子地区龙马溪组为例[J]. 地学前缘, 2015, 22(1): 374-385. doi: 10.13745/j.esf.2015.01.032 [51] ZHU Weiyao, QI Qian. Study on the multi-scale nonlinear flow mechanism and model of shale gas[J]. Scientia Sinica (Technologica), 2016, 46(2): 111-119. doi: 10.1360/N092016-00015 朱维耀, 亓倩. 页岩气多尺度复杂流动机理与模型研究[J]. 中国科学(技术科学), 2016, 46(2): 111-119. doi: 10.1360/N092016-00015 [52] DU Dianfa, ZHAO Yanwu, ZHANG Jing, et al. Progress and trends in shale gas seepage mechanism research[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(4): 136-144. doi: 10.11885/j.issn.1674-5086.2015.12.24.04 杜殿发, 赵艳武, 张婧, 等. 页岩气渗流机理研究进展及发展趋势[J]. 西南石油大学学报(自然科学版), 2017, 39(4): 136-144. doi: 10.11885/j.issn.1674-5086.2015.12.24.04 [53] MAXWELL S C, URBANCIC T I, STEINSBERGER N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett Shale[C]. SPE 77440-MS, 2002. doi: 10.2118/77440-MS [54] FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale[C]. SPE 77441-MS, 2002. doi: 10.2118/77441-MS [55] FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping[C]. SPE 90051-MS, 2004. doi: 10.2118/90051-MS [56] WU Qi, XU Yun, WANG Tengfei, et al. The revolution of reservoir stimulation: An introduction of volume fracturing[J]. Natural Gas Industry, 2011, 31(4): 7-12. doi: 10.3787/j.issn.1000-0976.2011.04.002 吴奇, 胥云, 王腾飞, 等. 增产改造理念的重大变革——体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7-12. doi: 10.3787/j.issn.1000-0976.2011.04.002 [57] ZHANG Hui, YUAN Liying, ZHANG Yanru, et al. Microcosmic biomarker of organic matter in sweet spots from marine shale gas[J]. Natural Gas Exploration and Development, 2019, 42(3): 38-45. doi: 10.12055/gaskk.issn.1673-3177.2019.03.005 张慧, 袁立颖, 张燕茹, 等. 海相页岩气勘探甜点的有机质微观标志[J]. 天然气勘探与开发, 2019, 42(3): 38-45. doi: 10.12055/gaskk.issn.1673-3177.2019.03.005 [58] ZHOU Q M, ROBERT D, ANDREW K, et al. Evaluating fracture-fluid flowback in marcellus using data-mining technologies[C]. SPE 173364-PA, 2016. doi: 10.2118/173364-PA [59] HALUSZCZAK L O, ROSE A W, KUMP L R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA[J]. Applied Geochemistry, 2013, 28(1): 55-61. doi: 10.1016/j.apgeochem.2012.10.002 [60] YOU Lijun, XIE Benbin, YANG Jian, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61-69. doi: 10.3787/j.issn.1000-0976.2018.12.007 游利军, 谢本彬, 杨建, 等. 页岩气井压裂液返排对储层裂缝的损害机理[J]. 天然气工业, 2018, 38(12): 61-69. doi: 10.3787/j.issn.1000-0976.2018.12.007 [61] YANG Bo, LUO Di, ZHANG Xin, et al. A Study of stress sensitivity of abnormal high pressure shale gas reservoir and reasonable productivity allocation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(2): 115-121. doi: 10.11885/j.issn.1674-5086.2014.03.11.01 杨波, 罗迪, 张鑫, 等. 异常高压页岩气藏应力敏感及其合理配产研究[J]. 西南石油大学学报(自然科学版), 2016, 38(2): 115-121. doi: 10.11885/j.issn.1674-5086.2014.03.11.01 [62] ZHANG Rui, NING Zhengfu, YANG Feng, et al. Experimental study on microscopic pore structure controls on shale permeability under compaction process[J]. Natural Gas Geoscience, 2014, 25(8): 1284-1289. doi: 10.11764/j.issn.1672-1926.2014.08.1284 张睿, 宁正福, 杨峰, 等. 微观孔隙结构对页岩应力敏感影响的实验研究[J]. 天然气地球科学, 2014, 25(8): 1284-1289. doi: 10.11764/j.issn.1672-1926.2014.08.1284 [63] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068 [64] YOU Lijun, YANG Pengfei, CUI Jia, et al. Feasibility of oxidative stimulation in organic matter-rich shale gas reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(6): 79-85. doi: 10.3969/j.issn.1009-9603.2017.06.012 游利军, 杨鹏飞, 崔佳, 等. 页岩气层氧化改造的可行性[J]. 油气地质与采收率, 2017, 24(6): 79-85. doi: 10.3969/j.issn.1009-9603.2017.06.012 [65] CHENG Qiuyang, YOU Lijun, KANG Yili, et al. The method of synergistic oxidation dissolution and hydraulic fracturing to improve shale gas recovery[C]. Fuzhou: National Natural Gas Academic Annual Conference, 2018. 程秋洋, 游利军, 康毅力, 等. 氧化溶蚀与水力压裂协同提高页岩气藏采收率方法[C]. 福州: 全国天然气学术年会, 2018. [66] CHEN Qiang, KANG Yili, YOU Lijun, et al. Change in composition and pore structure of Longmaxi black shale during oxidative dissolution[J]. International Journal of Coal Geology, 2017, 172: 95-111. doi: 10.1016/j.coal.2017.01.011 [67] XU Jianhong. Main influence factor analysis and evaluation of the productivity in low permeability oil reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(2): 144-148. doi: 10.3863/j.issn.1674-5086.2012.02.021 许建红. 低渗透油藏产能主要影响因素分析与评价[J]. 西南石油大学学报(自然科学版), 2012, 34(2): 144-148. doi: 10.3863/j.issn.1674-5086.2012.02.021 [68] ZHAO Bowen. Visual experimental study on the effect of fractures on CO2 flooding in low permeability reser-voirs[J]. Unconventional Oil & Gas, 2022, 9(6): 87-93, 99. doi: 10.19901/j.fcgyq.2022.06.13 赵博文. 裂缝对低渗透油藏CO2驱油影响的可视化实验研究[J]. 非常规油气, 2022, 9(6): 87-93, 99. doi: 10.19901/j.fcgyq.2022.06.13 [69] HE Ying, YANG Zhengming, LIU Xuewei, et al. The productivity calculation for well pattern of low permeability reservoir considering threshold pressure gradient[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(3): 163-166. doi: 10.3863/j.issn.1674-5086.2009.03.038 何英, 杨正明, 刘学伟, 等. 低渗透油田考虑启动压力梯度计算井网产量[J]. 西南石油大学学报(自然科学版), 2009, 31(3): 163-166. doi: 10.3863/j.issn.1674-5086.2009.03.038 |
[1] | 张本健, 路俊刚, 张芮, 蒋奇君, 肖正录. 川中大安寨段页岩排烃效率及其勘探启示[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 15-25. |
[2] | 黄莉莎, 闫建平, 胡兴中, 郑马嘉, 钟光海. 川南五峰组龙马溪组低阻页岩特征分析及启示[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 26-40. |
[3] | 钟成旭, 李道雄, 李郑涛, 谢刚, 张震. 渝西区块龙马溪组强封堵油基钻井液技术研究[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 103-113. |
[4] | 马泽元, 胥云, 翁定为, 郭英, 鄢雪梅. 水平井体积改造井距和簇间距优化研究[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 114-124. |
[5] | 康毅力, 赖哲涵, 陈明君, 吴建军, 李兵. 页岩储层应力敏感性的时间效应[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 53-63. |
[6] | 黄盛, 周灿, 李早元, 杨川, 刘洋. 亲油水泥浆界面封隔性能评价研究[J]. 西南石油大学学报(自然科学版), 2024, 46(1): 115-125. |
[7] | 李斌, 吉鑫, 彭军, 张昆, 魏祥峰. 川东南涪陵地区凉高山组湖相页岩生烃潜力评价[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 43-56. |
[8] | 汪敏, 杨桃, 唐洪明, 闫建平, 廖纪佳. 迁移深度神经网络的页岩总孔隙度预测[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 69-79. |
[9] | 杨兆中, 杜慧龙, 易良平, 李小刚, 苟良杰. 页岩气井液岩相互作用机理与焖井制度研究进展[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 80-94. |
[10] | 葛勋, 汤济广, 赵培荣, 唐永, 许启鲁. 渝东南彭水地区页岩储层构造应力场模拟解析[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 27-42. |
[11] | 何磊, 牟必鑫, 杨平, 陈杨, 刘治成. 康滇隆起东缘上三叠统页岩气有利区优选[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 43-56. |
[12] | 熊健, 吴俊, 刘向君, 张磊, 梁利喜. 陆相页岩储层地质力学特性及对压裂效果的影响[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 69-80. |
[13] | 付旻皓, 王平全, 鲁劲松, 冉超, 苏俊霖. 延长组长7段页岩水基钻井液封堵剂评价研究[J]. 西南石油大学学报(自然科学版), 2023, 45(5): 173-182. |
[14] | 祝效华, 李瑞, 刘伟吉, 李枝林, 陆灯云. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 1-18. |
[15] | 谭锋奇, 黎宪坤, 高阳, 李映艳, 张方. 吉木萨尔凹陷陆相页岩油储层测井定量解释[J]. 西南石油大学学报(自然科学版), 2023, 45(3): 29-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||