西南石油大学学报(自然科学版) ›› 2012, Vol. 34 ›› Issue (3): 145-149.

• 石油与天然气工程 • 上一篇    下一篇

非定常对流扩散方程的高阶差分格式

肖建英1,刘小华1,李永涛2   

  1. 1. 西南石油大学理学院,四川成都6105002. 西南石油大学化学化工学院,四川成都610500
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-06-01 发布日期:2012-06-01

Highly Accurate Difference Scheme for the UnsteadyConvection-Diffusion Equation

Xiao Jianying1, Liu Xiaohua1, Li Yongtao2   

  1. 1. College of Sciences,Southwest Petroleum University,Chengdu,Sichuan 610500,China2. College of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu,Sichuan 610500,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-06-01 Published:2012-06-01

摘要: 对流扩散方程主要包含对流和扩散两项。在数值计算中,方程中的扩散项一般采用具有优良物理特性和计算
精度的中心差分离散格式,而对对流项的处理就稍显困难,处理不当便会产生数值震荡或数值弥散,给数值计算带来
困难。针对对流扩散方程,通过引入指数变换将对流扩散方程变为扩散方程,避免对对流项的直接处理。利用四阶紧
致差分格式,首先建立三类特殊方程的高精度差分格式,在此基础上建立一维非定常含源对流扩散方程的高阶格式,
并进行稳定性分析,所得格式精度高且绝对稳定。数值算例表明了该格式的有效性。

关键词: 对流, 扩散, 差分, 高精度, 稳定性

Abstract: Convection-diffusion equation mainly contains two terms—convection and diffusion. In the numerical calculation,
central difference scheme,with excellent physical properties and high accuracy is often employed to discretize the diffusion
term,which has been fully able to meet the requirements for most practical problems,but somewhat difficult to handle convective
term. If handled improperly,it will produce numerical oscillation or numerical dispersion,which will bring difficulties
to the numerical calculation. To avoid handling the convection term directly,we change the convection-diffusion equation into
a diffusion equation with an exponential transformation. According to fourth-order compact difference scheme,three types
of special high-precision differential equation schemes are established firstly,then the process of the establishment of onedimensional
unsteady convection diffusion equation with source term is derived with stability analysis. The scheme has high
precision and absolute stability. In the end,the numerical result shows the effectiveness of the scheme.

Key words: convection, diffusion, difference scheme, high-precision, stability

中图分类号: