[1] JI Kun, GUO Shaobin, HOU Binchi. A logging calculation method for shale adsorbed gas content and its application[J]. Journal of Petroleum Science and Engineering, 2017, 150:250-256. doi:10.1016/j.petrol.2016.12.008 [2] 张雪芬,陆现彩,张林晔,等. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展,2010,25(6):597-604. doi:10.11867/j.issn.1001-8166.2010.06.0597 ZHANG Xuefen, LU Xiancai, ZHANG Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010, 25(6):597-604. doi:10.11867/j.issn.1001-8166.2010.06.0597 [3] 周秦,田辉,陈桂华,等. 页岩孔隙水中溶解气的主控因素与地质模型[J]. 煤炭学报,2013,38(5):800-804. doi:10.13225/j.cnki.jccs.2013.05.014 ZHOU Qin, TIAN Hui, CHEN Guihua, et al. Geological model of dissolved gas in pore water of gas shale and its controlling factors[J]. Journal of China Coal Society, 2013, 38(5):800-804. doi:10.13225/j.cnki.jccs.2013.05.014 [4] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,2016,43(2):166-178. doi:10.11698/PED.2016.02.02 ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China:Characteristics, challenges and prospects(II)[J]. Petroleum Exploration and Development, 2016, 43(2):166-178. doi:10.11698/PED.2016.02.02 [5] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796. doi:10.11764/j.issn.1672-1926.2017.02.017 ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12):1781-1796. doi:10.11764/j.issn.1672-1926.2017.02.017 [6] 刘洪林,王红岩. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业,2013,33(7):140-144. doi:10.3787/j.issn.1000-0976.2013.07.025 LIU Honglin, WANG Hongyan. Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China[J]. Natural Gas Industry, 2013, 33(7):140-144. doi:10.3787/j.issn.1000-0976.2013.07.025 [7] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701. doi:10.11698/PED.2015.06.01 ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China:Characteristics, challenges and prospects(I)[J]. Petroleum Exploration and Development, 2015, 42(6):689-701. doi:10.11698/PED.2015.06.01 [8] PAN Zhejun, CONNELL L D. Modelling permeability for coal reservoirs:A review of analytical models and testing data[J]. International Journal of Coal Geology, 2012, 92:1-44. doi:10.1016/j.coal.2011.12.009 [9] WU Keliu, CHEN Zhangxing, LI Xiangfang. Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs[J]. Chemical Engineering Journal, 2015, 281:813-825. doi:10.1016/j.cej.2015.07.012 [10] LI Junqian, LU Shuangfang, ZHANG Pengfei, et al. Estimation of gas-in-place content in coal and shale reservoirs:A process analysis method and its preliminary application[J]. Fuel, 2020, 259:116266. doi:10.1016/j.fuel.2019.116266 [11] 梁洪彬,张烈辉,陈满,等. 快速评价页岩含气量的新方法[J]. 西南石油大学学报(自然科学版), 2020,42(2):110-117. doi:10.11885/j.issn.1674-5086.2019.03.29.02 LIANG Hongbin, ZHANG Liehui, CHEN Man, et al. A new method of rapid evaluation of shale gas content[J]. Journal of Southwest Petroleum University (Seience & Technology Edition), 2020, 42(2):110-117. doi:10.11885/j.issn.1674-5086.2019.03.29.02 [12] LI Qianwen, PANG Xiongqi, TANG Ling, et al. Occurrence features and gas content analysis of marine and continental shales:A comparative study of Longmaxi Formation and Yanchang Formation[J]. Journal of Natural Gas Science & Engineering, 2018, 56:504-522. doi:10.1016/j.jngse.2018.06.019 [13] GOU Qiyang, XU Shang. Quantitative evaluation of free gas and adsorbed gas content of Wufeng-Longmaxi shales in the Jiaoshiba area, Sichuan Basin, China[J]. Advances in Geo-energy Research, 2019, 3(3):258-267. doi:10.26804/ager.2019.03.04 [14] LI Wenbiao, LU Shuangfang, LI Junqian, et al. Geochemical modeling of carbon isotope fractionation during methane transport in tight sedimentary rocks[J]. Chemical Geology, 2021, 565:120033. doi:10.1016/j.chemgeo.2020.120033 [15] MAHMOUD M. Development of a new correlation of gas compressibility factor (Z factor) for high pressure gas reservoirs[J]. Journal of Energy Resources Technology, 2014, 136(1):1-11. [16] GASPARIK M, GHANIZADEH A, BERTIER P, et al. High pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & Fuel, 2012, 26(8):4995-5004. doi:10.1021/ef300405g [17] POZO M, PINO D, BESSIERES D. Effect of thermal events on maturation and methane adsorption of Silurian black shales (Checa, Spain)[J]. Applied Clay Science, 2017, 136:208-218. doi:10.1016/j.clay.2016.11.026 [18] AYERS W B Jr. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins[J]. AAPG Bulletin, 2002, 86(11):1853-1890. [19] KING G R, ERTEKIN T, SCHWERER F C. Numerical simulation of the transient behavior of coal-seam degasification wells[C]. SPE 12258-PA, 1986. doi:10.2118/12258-PA [20] YANG Zhaobiao, QIN Yong, WANG Zhaofeng, et al. Desorption-diffusion model and lost gas quantity estimation of coalbed methane from coal core under drilling fluid medium[J]. Science China Earth Science, 2010, 53(4):626-632. doi:10.1007/s11430-010-0027-x [21] JARVIE D M. Shale resource systems for oil and gas:Part 1-Shale-gas resource systems[C]. AAPG Memoir, 2012, 97:69-87. doi:10.1306/13321446M973489 [22] ZHANG Luchuan, LI Bo, JIANG Shu, et al. Heterogeneity characterization of the lower Silurian Longmaxi marine shale in the Pengshui area, South China[J]. International Journal of Coal Geology, 2018, 195:250-266. doi:10.1016/j.coal.2018.05.015 [23] CHEN Guohui, LI Chun, LU Shuangfang, et al. Critical factors controlling adsorption capacity of shale gas in Wufeng-Longmaxi Formation, Sichuan Basin:Evidences from both experiments and molecular simulations[J]. Journal of Natural Gas Science and Engineering, 2021, 88:103774. doi:10.1016/j.jngse.2020.103774 [24] 刘大锰,李俊乾,李紫楠. 我国页岩气富集成藏机理及其形成条件研究[J]. 煤炭科学技术,2013,41(9):66-70,74. doi:10.13199/j.cnki.cst.2013.09.001 LIU Dameng, LI Junqian, LI Zinan. Research on enrichment and accumulation mechanism of shale gas and its formation conditions in China[J]. Coal Science and Technology, 2013, 41(9):66-70, 74. doi:10.13199/j.cnki.cst.2013.09.001 [25] ZHANG Tongwei, ELLIS G S, RUPPEL S C, et al. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J]. Organic Geochemistry, 2012, 47:120-131. doi:10.1016/j.orggeochem.2012.03. 012 [26] TAN Jingqiang, WENIGER P, KROOSS B, et al. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part II:Methane sorption capacity[J]. Fuel, 2014, 129:204-218. doi:10.1016/j.fuel.2014.03.064 [27] GASPARIK M, BERTIER P, GENSTERBLUM Y, et al. Geological controls on the methane storage capacity in organic-rich shales[J]. International Journal of Coal Geology, 2014, 123:34-51. doi:10.1016/j.coal.2013.06.010 [28] LI Peng, JIANG Zhenxue, ZHENG Min, et al. Estimation of shale gas adsorption capacity of the Longmaxi Formation in the Upper Yangtze Platform, China[J]. Journal of Natural Gas Science and Engineering, 2016, 34:1034-1043. doi:10.1016/j.jngse.2016.07.052 [29] TIAN Hui, LI Tengfei, ZHANG Tongwei, et al. Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, Southwest China:Experimental results and geological implications[J]. International Journal of Coal Geology, 2016, 156:36-49. doi:10.1016/j.coal.2016.01.013 [30] 李文镖,卢双舫,李俊乾,等. 南方海相页岩物质组成与孔隙微观结构耦合关系[J]. 天然气地球科学,2019,30(1):31-42. doi:10.11764/j.issn.1672-1926.2018.10.001 LI Wenbiao, LU Shuangfang, LI Junqian, et al. The coupling relationship between material composition and pore microstructure of southern China marine shale[J]. Natural Gas Geoscience, 2019, 30(1):31-42. doi:10.11764/j.issn.1672-1926.2018.10.001 [31] LI Junqian, WANG Siyuan, LU Shuangfang, et al. Microdistribution and mobility of water in gas shale:A theoretical and experimental study[J]. Marine and Petroleum Geology, 2019, 102:496-507. doi:10.1016/j.marpetgeo.2019.01.012 [32] 吉利明,邱军利,张同伟,等. 泥页岩主要黏土矿物组分甲烷吸附实验[J]. 地球科学(中国地质大学学报),2012,37(5):1043-1050. doi:10.3799/dqkx.2012.111 JI Liming, QIU Junli, ZHANG Tongwei, et al. Experiments on methane adsorption of common clay minerals in shale[J]. Earth Science (Journal of China University of Geosciences), 2012, 37(5):1043-1050. doi:10.3799/dqkx.2012.111 [33] 李俊乾,卢双舫,张鹏飞,等. 页岩基质孔隙水定量表征及微观赋存机制[J].石油学报,2020,41(8):979-990. doi:10.7623/syxb202008007 LI Junqian, LU Shuangfang, ZHANG Pengfei, et al. Quantitative characterization and microscopic occurrence mechanism of pore water in shale matrix[J]. Acta Petrolei Sinica, 2020, 41(8):979-990. doi:10.7623/syxb202008007 [34] 胡志明,端祥刚,何亚彬,等. 储层原生水对页岩气赋存状态与流动能力的影响[J]. 天然气工业,2018,38(7):44-51. doi:10.3787/j.issn.1000-0976.2018.07.006 HU Zhiming, DUAN Xianggang, HE Yabin, et al. Influence of reservoir primary water on shale gas occurrence and flow capacity[J]. Natural Gas Industry, 2018, 38(7):44-51. doi:10.3787/j.issn.1000-0976.2018.07.006 |