[1] ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. doi: 10.3787/j.issn.1000-0976.2021.01.001 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1—14. doi: 10.3787/j.issn.1000-0976.2021.01.001 [2] ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80. doi: 10.3787/j.issn.1000-0976.2021.08.007 张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69—80. doi: 10.3787/j.issn.1000-0976.2021.08.007 [3] FENG Ziqi, HAO Fang, TIAN Jinqiang, et al. Shale gas geochemistry in the Sichuan Basin, China[J]. Earth-Science Reviews, 2022, 232: 104141. doi: 10.1016/j.earscirev.2022.104141 [4] ZHANG Jinchuan, Shi Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry B, 2022, 9(1): 20-32. doi: 10.1016/j.ngib.2021.08.014 [5] THONG M L, TUNG H D, NGUYEN T T, et al. What prospects for shale gas in Asia? Case of shale gas in China[J]. Journal of World Energy Law & Business, 2021, 13(5-6): 426-440. doi: 10.1093/jwelb/jwaa037 [6] DONG Dazhong, LIANG Feng, GUAN Quanzhong, et al. Development model and identification evaluation technology of Wufeng-Longmaxi Formation quality shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(8): 96-111. doi: 10.3787/j.issn.1000-0976.2022.08.008 董大忠, 梁峰, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气优质储层发育模式及识别评价技术[J]. 天然气工业, 2022, 42(8): 96—111. doi: 10.3787/j.issn.1000-0976.2022.08.008 [7] LI Zhengtao, ZHANG Zhen, WU Pengcheng, et al. Mechanical mechanisms of wellbore instability of deep anisotropic shale in Southern Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(4): 11-25. doi: 10.11885/j.issn.1674-5086.2021.04.28.05 李郑涛, 张震, 吴鹏程, 等. 川南深层各向异性页岩井壁失稳力学机理[J]. 西南石油大学学报(自然科学版), 2021, 43(4): 11—25. doi: 10.11885/j.issn.1674-5086.2021.04.28.05 [8] WANG Xiaojun, BAI Dongqing, SUN Yunchao, et al. Plugging-enhanced whole oil-based drilling fluid system for shale gas wells: A cased study of the Weiyuan Block in the Changning-Weiyuan National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2020, 40(6): 107-114. doi: 10.3787/j.issn.1000-0976.2020.06.011 王晓军, 白冬青, 孙云超, 等. 页岩气井强化封堵全油基钻井液体系—以长宁—威远国家级页岩气示范区威远区块为例[J]. 天然气工业, 2020, 40(6): 107—114. doi: 10.3787/j.issn.1000-0976.2020.06.011 [9] ZHAO Kai, FAN Yongjie, YU Bo, et al. Research progress of wellbore stability in hard brittle shale[J]. Oil Drilling & Production Technology, 2016, 38(3): 277-285. doi: 10.13639/j.odpt.2016.03.001 赵凯, 樊勇杰, 于波, 等. 硬脆性泥页岩井壁稳定研究进展[J]. 石油钻采工艺, 2016, 38(3): 277—285. doi: 10.13639/j.odpt.2016.03.001 [10] ZHANG Zhen, WAN Xiumei, WU Pengcheng, et al. Analysis of causes and countermeasures for sidewall instability in deep shale wells, Longmaxi Formation, southern Sichuan[J]. Special Oil & Gas Reservoirs, 2022, 29(1): 160-168. doi: 10.3969/j.issn.1006-6535.2022.01.024 张震, 万秀梅, 吴鹏程, 等. 川南龙马溪组深层页岩井壁失稳原因分析及对策[J]. 特种油气藏, 2022, 29(1): 160—168. doi: 10.3969/j.issn.1006-6535.2022.01.024 [11] FAN Yu, CUI Shuai, LIU Houbin, et al. Borehole wall tensile caving instability in the horizontal well of deep brittle shale[J]. Science Progress, 2021, 104(1): 109-119. doi: 10.1177/00368504211002330 [12] WANG Chuanlei, LI Gao, YAN Juntao, et al. Experiment study of hard and brittle shale wellbore instability mechanism in south of Sichuan[J]. Science Technology and Engineering, 2012, 12(30): 8012-8015. doi: 10.3969/j.issn.1671-1815.2012.30.046 汪传磊, 李皋, 严俊涛, 等. 川南硬脆性页岩井壁失稳机理实验研究[J]. 科学技术与工程, 2012, 12(30): 8012—8015. doi: 10.3969/j.issn.1671-1815.2012.30.046 [13] LIU Houbin, CUI Shuai, MENG Yingfeng, et al. Study on wellbore caving and instability of horizontal well in deep brittle shale[J]. Fault-Block Oil and Gas Field, 2021, 28(3): 323-328. doi: 10.6056/dkyqt202103007 刘厚彬, 崔帅, 孟英峰, 等. 深层脆性页岩水平井井壁崩落失稳研究[J]. 断块油气田, 2021, 28(3): 323—328. doi: 10.6056/dkyqt202103007 [14] ZHANG Hongwei, ZUO Fengjiang, LI Hongjun, et al. Method for evaluation of plugging of nano-micron fractures[J]. Drilling Fluid & Completion Fluid, 2015, 32(6): 43-45, 49. doi: 10.3696/j.issn.1001-5620.2015.06.011 张洪伟, 左凤江, 李洪俊, 等. 微裂缝封堵剂评价新方法及强封堵钻井液配方优选[J]. 钻井液与完井液, 2015, 32(6): 43—45, 49. doi: 10.3696/j.issn.1001-5620.2015.06.011 [15] CONTRERAS O, HARELAND G, HUSEIN M, et al. Application of in-house prepared nanoparticles as filtration control additive to reduce formation damage[C]. SPE 168116-MS, 2014. doi: 10.2118/168116-MS [16] CONTRERAS O, HARELAND G, HUSEIN M, et al. Wellbore strengthening in sandstones by means of nanoparticle-based drilling fluids[C]. SPE 170263-MS, 2014. doi: 10.2118/170263-MS [17] MORONI L P, VICKERS S R, GRAY C, et al. Good things come in little packages: Nanotechnology for reduction in pore pressure transmission[C]. SPE 170687-MS, 2014. doi: 10.2118/170687-MS [18] WANG Peiping. Application of polymer sulfonated emulsion drilling fluid in Jie-206 Well in Linpan[J]. Petroleum Geology and Engineering, 2007, 21(2): 75-77. doi: 10.3969/j.issn.1673-8217.2007.02.022 王佩平. 聚磺纳米乳液钻井液在临盘街206井的应用[J]. 石油地质与工程, 2007, 21(2): 75—77. doi: 10.3969/j.issn.1673-8217.2007.02.022 [19] XU Heng, YANG Jie, ZHOU Fengying, et al. Application of low density anti-sloughing drilling fluid in Jie-207 Well[J]. Petroleum Geology and Engineering, 2006, 26(6): 61-63. doi: 10.3969/j.issn.1673-8217.2006.06.021 徐恒, 杨杰, 周凤英, 等. 低密度防塌钻井液在街207井的应用[J]. 石油地质与工程, 2006, 26(6): 61—63. doi: 10.3969/j.issn.1673-8217.2006.06.021 [20] JIANG Yiming, ZHANG Dingyu, LI Dahua, et al. Major factors for wellbore stabilities of shale gas wells in Chongqing Area[J]. China Petroleum Exploration, 2016, 21(5): 19-25. doi: 10.3969/j.issn.1672-7703.2016.05.003 姜逸明, 张定宇, 李大华, 等. 重庆地区页岩气钻井井壁稳定主控因素研究[J]. 中国石油勘探, 2016, 21(5): 19—25. doi: 10.3969/j.issn.1672-7703.2016.05.003 [21] ZHANG Dingyu, DENG Jingen, LI Dahua, et al. The law of wellbore instability in non-water sensitive gas shales[J]. Science Technology and Engineering, 2013, 13(34): 10268-10271. doi: 10.3969/j.issn.1671-1815.2013.34.031 张定宇, 邓金根, 李大华, 等. 页岩储层水敏性及井壁失稳规律分析[J]. 科学技术与工程, 2013, 13(34): 10268—10271. doi: 10.3969/j.issn.1671-1815.2013.34.031 [22] WANG Bo, SUN Jingsheng, SHEN Feng, et al. Mechanism of wellbore instability in continental shale gas horizontal sections and its water-based drilling fluid countermeasures[J]. Natural Gas Industry B, 2020, 7(6): 680-688. doi: 10.1016/j.ngib.2020.04.008 [23] DOKHANI V, YU Mengjiao, BLOYS B. A wellbore stability model for shale formations: Accounting for strength anisotropy and fluid induced instability[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 174-184. doi: 10.1016/j.jngse.2016.04.038 [24] AL-BAZALI T M. The consequences of using concentrated salt solutions for mitigating wellbore instability in shales[J]. Journal of Petroleum Science & Engineering, 2011, 80(1): 94-101. doi: 10.1016/j.petrol.2011.10.005 [25] AL-BAZALI T M, ZHANG JIANGUO, WOLFE C, et al. Wellbore instability of directional wells in laminated and naturally fractured shales[J]. Journal of Porous Media, 2009, 12(2): 119-130. doi: 10.1615/JPorMedia.v12.i2.20 [26] WANG Zhiyuan, HUANG Weian, FAN Yu, et al. Technical research and application of oil base drilling fluid with strong plugging property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31-38. doi: 10.11911/syztjs.2021039 王志远, 黄维安, 范宇, 等. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术, 2021, 49(5): 31—38. doi: 10.11911/syztjs.2021039 [27] BAI Yang, LI Daoxiong, LI Wenzhe, et al. Borehole wall stabilization drilling fluid technology of Longmaxi Formation horizontal section in Changning Block[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(2): 79-88. doi: 10.11885/j.issn.1674-5086.2021.08.27.01 白杨, 李道雄, 李文哲, 等. 长宁区块龙马溪组水平段井壁稳定钻井液技术[J]. 西南石油大学学报(自然科学版), 2022, 44(2): 79—88. doi: 10.11885/j.issn.1674-5086.2021.08.27.01 [28] ZHANG Hao, ZHANG Shifeng, YAO Jing, et al. Mechanism of blocking mud shale on Longmaxi Formation by graphene oxide[J]. Fine Chemicals, 2020, 37(5): 1038-1044. doi: 10.13550/j.jxhg.20191027 张浩, 张世锋, 姚靖, 等. 氧化石墨烯封堵龙马溪组泥页岩机理研究[J]. 精细化工, 2020, 37(5): 1038—1044. doi: 10.13550/j.jxhg.20191027 |